

Cognitive Architecture

Michael D. Byrne

Department of Psychology
Rice University

6100 Main St., MS-25
Houston, TX 77005

byrne@acm.org
+1 713-348-3770 voice
+1 713-348-5221 fax
Byrne HoHCI chapter page 1

ever,

ge. One

The

ture

 four

T-R/

n of

r

.g.,

ovel;

t, then

in the

is a

“Designing interactive computer systems to be efficient and easy to use is important

so that people in our society may realize the potential benefits of computer-based

tools... Although modern cognitive psychology contains a wealth of knowledge of

human behavior, it is not a simple matter to bring this knowledge to bear on the

practical problems of design—to build an applied psychology that includes theory,

data, and knowledge.” (Card, Moran, & Newell, 1983, p. vii).

1. Introduction

Integrating theory, data, and knowledge about cognitive psychology and human

performance in a way that is useful for guiding design in HCI is still not a simple matter. How

there have been significant advances since Card, Moran, and Newell wrote the above passa

of the key advances is the development of cognitive architecture, the subject of this chapter.

chapter will first consider the what it is to be cognitive architecture and why cognitive architec

is relevant for HCI. In order to detail the present state of cognitive architectures in HCI, it is

important to consider some of the past use of cognitive architectures in HCI research. Then,

architectures actively in use in the research community (LICAI/CoLiDeS, Soar, EPIC, and AC

PM) and their application to HCI will be examined. The chapter will conclude with a discussio

the future of cognitive architectures in HCI.

1.1 What Are Cognitive Architectures?

Most any dictionary will list several different definitions for the word “architecture.” Fo

example, dictionary.com lists among them “a style and method of design and construction,” e

Byzantine architecture; “orderly arrangement of parts; structure,” e.g., the architecture of a n

and one from computer science: “the overall design or structure of a computer system.” Wha

would something have to be qualify as a “cognitive architecture”? It is something much more

latter senses of the word “architecture,” an attempt to describe the overall structure and

arrangement of a very particular thing, the human cognitive system. A cognitive architecture

broad theory of human cognition based on a wide selection of human experimental data, and
Byrne HoHCI chapter page 2

m,

c

ology

on,

ssed a

of

ting

 the

nce,

at

 way

not

-like

 only a

quer

; this

 for an

imple

ith
implemented as a running computer simulation program. Young (Gray, Young, & Kirschenbau

1997; Ritter & Young, 2001) defines a cognitive architecture as an embodiment of “a scientifi

hypothesis about those aspects of human cognition that are relatively constant over time and

relatively independent of task.”

This idea has been a part of cognitive science since the early days of cognitive psych

and artificial intelligence, as manifested in the General Problem Solver or GPS (Newell & Sim

1963), one of the first successful computational cognitive models. These theories have progre

great deal since GPS, and are gradually becoming more and more broad. One of the best

descriptions of the vision for this area is presented in Newell’s (1990) book Unified Theories

Cognition. In it, Newell argues that the time has come for cognitive psychology to stop collec

disconnected empirical phenomena and begin seriously considering theoretical unification in

form of computer simulation models. Cognitive architectures are attempts to do just this.

Cognitive architectures are distinct from engineering approaches to artificial intellige

which strive to construct intelligent computer systems by whatever technologies best serve th

purpose. Cognitive architectures are designed to simulate human intelligence in a humanlike

(Newell, 1990). For example, the chess program that defeated Kasparov, Deep Blue, would

qualify as a cognitive architecture, because it does not solve the problem (chess) in a human

way. Deep Blue uses massive search of the game space, while human experts generally look

few moves ahead, but concentrate effectively on quality moves.

Cognitive architectures differ from traditional research in psychology in that work on

cognitive architecture is integrative. That is, they include attention, memory, problem solving,

decision making, learning, and so on. Most theorizing in psychology follows a divide-and-con

strategy that tends to generate highly specific theories of a very limited range of phenomena

has changed little since the 1970’s (Newell, 1973). This limits the usefulness of such theories

applied domain like HCI where users employ a wide range of cognitive capabilities in even s

tasks. Instead of asking “how can we describe this isolated phenomenon?” people working w
Byrne HoHCI chapter page 3

about

an

ular

ed to

. The

se the

ing

e

irst, a

 of

man

rnate

d by

r

ance,

time

ion

s as an

ction.

en

s,

 solid
cognitive architectures can ask “how does this phenomenon fit in with what we already know

other aspects of cognition?”

Another important feature of cognitive architectures is that they specify only the hum

“virtual machine,” the fixed architecture. A cognitive architecture alone cannot do anything.

Generally, the architecture has to be supplied with the knowledge needed to perform a partic

task. The combination of an architecture and a particular set of knowledge is generally referr

as a model. In general, it is possible to construct more than one model for any particular task

specific knowledge incorporated into a particular model is determined by the modeler. Becau

relevant knowledge must be supplied to the architecture, the knowledge engineering task fac

modelers attempting to model performance on complex tasks can be formidable.

Another centrally important feature of cognitive architectures is that they are softwar

artifacts constructed by human programmers. This has a number of relevant ramifications. F

model of a task constructed in a cognitive architecture is runnable and produces a sequence

behaviors. These behavior sequences can be compared with the sequences produced by hu

users to help assess the quality of a particular model. They may also provide insight into alte

ways to perform a task; that is, they may show possible strategies that are not actually utilize

the people performing the task. This can be useful in guiding interface design as well. Anothe

feature of many architectures is that they enable the creation of quantitative models. For inst

the model may say more than just “click on button A and then menu B,” but may include the

between the two clicks as well. Models based on cognitive architectures can produce execut

times, error rates, and even learning curves. This is a major strength of cognitive architecture

approach to certain kinds of HCI problems and will be discussed in more detail in the next se

On the other hand, cognitive architectures are large software systems, which are oft

considered difficult to construct and maintain. Individual models are also essentially program

written in the “language” of the cognitive architecture. Thus, individual modelers need to have

programming skills.
Byrne HoHCI chapter page 4

w,

 that

is is

in

s does

ut

e

t

ce.

where

eer.”

hile

st

itional

g

t their

rive

ides a

ere is

of the

ation

e in

st will
Finally, cognitive architectures are not in wide use among HCI practitioners. Right no

they exist primarily in academic research laboratories. One of the barriers for practitioners is

learning and using most cognitive architectures is itself generally a difficult task. However, th

gradually changing and some of the issues being addressed in this regard will be discussed

section 4. Furthermore, even if cognitive architectures are not in wide use by practitioners, thi

not mean that they are irrelevant to practitioners. The next section highlights why cognitive

architectures are relevant to a wide HCI audience.

1.2 Relevance to Human-computer Interaction

For some readers, the relevance of models that produce quantitative predictions abo

human performance will be obvious. For others, this may be less immediately clear. Cognitiv

architectures are relevant to usability as an engineering discipline, have several HCI-relevan

applications in computing systems, and serve an important role in HCI as a theoretical scien

At nearly all HCI-oriented conferences, and many online resources, there are areas

corporations recruit HCI professionals. A common job title in these forums is “usability engin

Implicit in this title is the view that usability is, at least in part, an engineering enterprise. And w

people with this job title are certainly involved in product design, there is a sense in which mo

usability engineering would not be recognized as engineering by people trained in more trad

engineering disciplines such as electrical or aerospace engineering. In traditional engineerin

disciplines, design is generally guided at least in part by quantitative theory. Engineers have a

disposal hard theories of the domain in which they work, and these theories allow them to de

quantitative predictions. Consider an aerospace engineer designing a wing. Like a usability

engineer, the aerospace engineer will not start with nothing; a pre-existing design often prov

starting point. But when the aerospace engineer decides to make a change in that design, th

usually quantitative guidance about how the performance of the wing will change as a result

change in design. This guidance, while quantitative, is not infallible, hence the need for evalu

tools like wind tunnels. This is not unlike the usability engineer’s usability test. However, unlik

usability testing, the aerospace has some quantitative idea about what the outcome of the te
Byrne HoHCI chapter page 5

cation

id

has

nd the

ith

hort

low

 small

 Gray,

ephone

 often

rate in

y

 not

gh.

r

not be
be, and this is not guided simply by intuition and experience, but by a quantitative theory of

aerodynamics. In fact, this theory is now so advanced that few wind tunnels are being built

anymore. Instead, they are being replaced by computer simulations, an outcome of the appli

of computational techniques to complex problems in aerodynamics called “computational flu

dynamics.” This has not entirely replaced wind tunnels, but the demand for wind tunnel time

clearly been affected by this development.

For the most part, the usability engineer lacks the quantitative tools available to the

aerospace engineer. Every design must be subjected to its own wind tunnel (usability) test, a

engineer has little guidance about what to expect other than from intuition and experience w

similar tests. While intuition and experience can certainly be valuable guides, they often fall s

of more “hard” quantitative methods. Perhaps the engineer can intuit that interface “X” will al

users to complete tasks faster than with interface “Y,” but how much faster? 10%? 20%? Even

savings in execution times can add up to large financial savings for organizations when one

considers the scale of the activity. The paradigm example is the telephone operators studied

John, and Atwood (1993), where even a second saved on an average call would save the tel

company millions of dollars.

Computational models based on cognitive architectures have the potential to provide

detailed quantitative answers, and for more than just execution times. Error rates, transfer of

knowledge, learning rates, and other kinds of performance measures are all metrics than can

be provided by architecture-based models. Even if such models are not always precisely accu

an absolute sense, they may still be useful in a comparative sense. For example, if a usabilit

engineer is comparing interface A with interface B and the model at his or her disposal does

accurately predict the absolute times to complete some set of benchmark tasks, it may still

accurately capture the difference between the two interfaces, which may be more than enou

Additionally, there are certain circumstances when usability tests are impractical or

prohibitively costly, or both. For example, access to certain populations such as physicians o

astronauts may be difficult or expensive, so bringing them in for repeated usability tests may
Byrne HoHCI chapter page 6

ask

ade to

for

man

odels

 GOMS

lson,

e

e

odels

utable

ledge

ecific

ten in

e in

ledge

ller’s

 to the

r

dge

 of this

ct what

m.
feasible. While developing a model of a pilot or an air traffic controller performing an expert t

with specialized systems may be difficult at first, re-running that model to assess a change m

the user interface should be much more straightforward than performing a new usability test

each iteration of the system. This is possible only with a quantitatively realistic model of the hu

in the loop, one that can produce things like execution times and error rates. Computational m

can, in principle, act as surrogate users in usability testing, even for special populations.

Of course, some of these measures can be obtained through other methods such as

analysis (Card, Moran, and Newell, 1983; John & Kieras, 1996) or cognitive walkthrough (Po

Lewis, Reiman, & Wharton, 1992). However, these techniques were originally grounded in th

same ideas as some prominent cognitive architectures and are essentially abstractions of th

relevant architectures for particular HCI purposes. Also, architecture-based computational m

provide things that GOMS models and cognitive walkthroughs do not. First, models are exec

and generative. A GOMS analysis, on the other hand, is a description of the procedural know

the user has to have and the sequence of actions that must be performed to accomplish a sp

task instance, while the equivalent computational model actually generates the behaviors, of

real time or faster. Equally importantly, computational models have the capacity to be reactiv

real time. So, while it may be possible to construct a GOMS model which describes the know

necessary and the time it will take an operator to classify a new object on an air traffic contro

screen, a paper-and-pencil GOMS model cannot actually execute the procedure in response

appearance of such an object. A running computational model, on the other hand, can.

Because of this property, architecture-based computational models have some othe

important uses beyond acting as virtual users in usability tests. One such use is in intelligent

tutoring systems (ITSs). Consider the Lisp tutor (Anderson, Conrad, & Corbett, 1989). This

tutoring system contained an architecture-based running computational model of the knowle

necessary to implement the relevant Lisp functions, and a module for assessing which pieces

knowledge were mastered by the student. Because the model was executable, it could predi

action the student would take if the student had correct knowledge of how to solve the proble
Byrne HoHCI chapter page 7

r more

ge is

 ITS.

 more

y

p the

ning

ame

 for

ally (see

g

in a

ts of

eir

er,

uld

here

le

ensive

nitive

th just

ins

s things

y. This

than

sible
When the student took a different action, this told the ITS that the student was missing one o

relevant pieces of knowledge. The student could then be given feedback about what knowled

missing or incomplete, and problems which exercise this knowledge could be selected by the

By identifying students’ knowledge, and the gaps in that knowledge, it is possible to generate

effective educational experiences. Problems which contain knowledge the student has alread

mastered can be avoided, to not bore the student with things they already know. This frees u

student to concentrate on the material they have not yet mastered, resulting in improved lear

(Anderson, et al., 1989). While the Lisp tutor is an old research system, ITSs based on the s

underlying cognitive architecture with the same essential methodology have been developed

more pressing educational needs such as algebra and geometry and are now sold commerci

www.carnegielearning.com).

There is another HCI-relevant application for high-fidelity cognitive models: populatin

simulated worlds or situations. For example, training an F-16 fighter pilot is expensive, even

simulator, because that trainee needs to face realistic opposition. Realistic opposition consis

other trained pilots, so training one person requires taking several trained pilots away from th

normal duties (i.e., flying airplanes on real missions). This is difficult and expensive. If, howev

the other pilots could be simulated realistically, then the trainee could face opposition that wo

have useful training value, without having to remove already-trained pilots from their duties. T

are many training situations like this, where the only way to train someone is to involve multip

human experts who must all be taken away from their regular jobs. However, the need for exp

experts can potentially be eliminated (or at least reduced) by using architecturally-based cog

models in place of the human experts. The U.S. military has already started to experiment wi

such a scenario (Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999). There are other doma

besides training where having realistic opponents is desirable, such as video games. Beside

like texture-mapped 3D graphics, one of the features often used to sell games is network pla

enables players to engage opponents whose capabilities are more comparable to their own

typical computer-generated opponents. However, even with network play, it is not always pos
Byrne HoHCI chapter page 8

e high-

deo

rk

it

logy

t

t is

quire

rfect

ore

tures

ber

ct

 and

m

ternal

ies that

ions to

y

ing
for a game to find an appropriate opponent. If the computer generated opponent were a mor

fidelity simulation of a human in terms of cognitive and perceptual-motor capabilities, then vi

game players would have no difficulty finding appropriate opponents without relying on netwo

play. While this might not be the most scientifically interesting use of cognitive architectures,

seems inevitable that cognitive architectures will be used in this way.

Cognitive architectures are also theoretically important to HCI as an interdisciplinary

field. Many people (including some cognitive psychologists) find terms from cognitive psycho

such as “working memory” or “mental model” vague and ill-defined. A harsh evaluation of

explanations relying on such terms is found in Salthouse (1988, p. 3): “It is quite possible tha

interpretations relying on such nebulous constructs are only masquerading ignorance in wha

essentially vacuous terminology.” Computational cognitive architectures, on the other hand, re

explicit specifications of the semantics of theoretical terms. Even if the architectures are impe

descriptions of the human cognitive system, they are at a minimum well-specified and theref

clearer in what they predict than strictly verbal theories.

A second theoretical advantage of computational theories such as cognitive architec

is they provide a window into how the theory actually works. As theories grow in size and num

of mechanisms, the interactions of those mechanisms becomes increasingly difficult to predi

analytically. Computer simulations permit relatively rapid evaluations of complex mechanisms

their interactions. (For an excellent discussion of this topic, see Simon, 1996.) Another proble

with theories based solely on verbal descriptions is that it can be very difficult to assess the in

coherence of such theories, while such assessment is much more straightforward with

computational models. Verbal theories can easily hide subtle (and not so subtle) inconsistenc

make them poor scientific theories. Computational models, on the other hand, force explanat

have a high level of internal coherence; theories that are not internally consistent are typicall

impossible to implement on real machines.

Finally, HCI is an interdisciplinary field, and thus theories that are fundamentally

interdisciplinary in nature are appropriate. Cognitive architectures are such theories, combin
Byrne HoHCI chapter page 9

 with

ce are

e

n to

act

a long

t in

ems

l

ally,

h on

ld.

sor

n

ure

s, and

Figure
computational methods and knowledge from the artificial intelligence end of computer science

data and theories from cognitive psychology. While cognitive psychology and computer scien

certainly not the only disciplines that participate in HCI, they are two highly visible forces in th

field. Psychological theories that are manifested as executable programs should be less alie

people with a computer science background than more traditional psychological theories.

Thus, cognitive architectures are clearly relevant to HCI at a number of levels. This f

has not gone unnoticed by the HCI research community. In fact, cognitive architectures have

history in HCI, dating back to the original work of Card, Moran, and Newell (1983).

2. Brief Look at Past Systems in HCI

The total history of cognitive architectures and HCI would be far too long to documen

a single chapter, however, it is possible to touch on some highlights. While not all of the syst

described in this section qualify as complete cognitive architectures, they all share intellectua

history with more current architectures and influenced their development and use in HCI. Fin

many of the concepts developed in these efforts are still central parts of the ongoing researc

cognitive architecture. Also, there is a natural starting point:

2.1 The Model Human Processor (MHP) and GOMS

The Psychology of Human-Computer Interaction (Card, Moran, and Newell, 1983) is

clearly a seminal work in HCI, one of the defining academic works in the early days of the fie

While that work did not produce a running cognitive architecture, it was clearly in the spirit of

cognitive architectures and was quite influential in the development of current cognitive

architectures. Two particular pieces of that work are relevant here, the Model Human Proces

(MHP) and GOMS.

The MHP represents a synthesis of the literature on cognitive psychology and huma

performance up to that time, and sketches the framework around which a cognitive architect

could be implemented. The MHP is a system with multiple memories and multiple processor

many of the properties of those processors and memories is described in some detail. (See
Byrne HoHCI chapter page 10

ber of

ce, in

rocessor

r. The

smit

r

mplex

 very

pace

terms

traints

ard,

ior,

is

CI-
1.) Card, Moran, and Newell also specified the interconnections of the processors and a num

general operating principles. In this system, there are three processors: one cognitive, one

perceptual, and one motor. In some cases the system behaves essentially serially. For instan

order for the system to press a key in response to the appearance of a light, the perceptual p

must detect the appearance of the light and transmit this information to the cognitive processo

cognitive processor’s job is to decide what the appropriate response should be, and then tran

that to the motor processor, which is responsible for actually executing the appropriate moto

command. In this situation, the processors act serially, one after another. However, in more co

tasks such as transcription typing, all three processors will often be working in parallel.

---------- insert Figure 1 about here ----------

Besides the specification of the timing for each processor and the connectivity of the

processors, Card, Moran, and Newell lay out some general operating principles ranging from

general and qualitative to detailed and quantitative. For example, Principle P9, the Problem S

Principle, states:

The rational activity in which people engage to solve a problem can be described in

of (1) a set of states of knowledge, (2) operators for changing one state into another, (3) cons

on applying operators, and (4) control knowledge for deciding which operator to apply next. (C

et al. 1983, p. 27)

This is a particularly general and somewhat vague principle. In contrast, consider

Principle P5, Fitts’s Law:

The time Tpos to move the hand to a target of size S which lies a distance D away

is given by:

where IM = 100 [70~120] ms/bit. (Card, et al. 1983, p. 27)

This is a very specific principle which quantitatively describes hand movement behav

which is highly relevant to, say, pointing with a mouse. Overall, the specification of the MHP

quite thorough, and lays out a basis for a cognitive architecture able to do a wide variety of H

T I D Spos M= +log (/ .)2 5
Byrne HoHCI chapter page 11

nning

CI

and

als,

es

se

ving.

s in

ty of

ibes

. Based

tive

s of

al

en

ally

l come

e IF-

stem.

te.
relevant tasks. However, Card, et al. did not implement the MHP as a running cognitive

architecture. This is likely for pedagogical reasons; it is not necessary to have a complete, ru

cognitive architecture for the general properties of that architecture to be useful for guiding H

researchers and practitioners. At the time, computational modeling was the domain of a very

specialized few in cognitive psychology.

Card, et al. lays out another concept that has been highly influential throughout HCI

particularly in the community of computational modelers. This is GOMS, which stands for go

operators, methods, and selection rules. GOMS is a framework for task analysis that describ

routine cognitive skills in terms of the listed four components. Routine cognitive skills are tho

where the user knows what the task is and how to do the task without doing any problem sol

Text editing with a familiar editor is the prototypical case of this, but clearly a great many task

of interest in HCI could be classified as routine cognitive skills. Thus, the potential applicabili

GOMS is quite broad. Indeed, GOMS has been applied to a variety of tasks; the Web site

www.gomsmodel.org lists 143 GOMS-related papers in its bibliography.

What does a GOMS analysis provide? Essentially, a GOMS analysis of a task descr

the hierarchical procedural knowledge a person must have to successfully complete that task

on that, and the sequence of operators that must be executed, it is possible to make quantita

predictions about the execution time for a particular task. Other analyses, such as prediction

error, functionality coverage, and learning time are also sometimes possible. Since the origin

formulation presented in Card, et al., a number of different forms of GOMS analysis have be

developed, each with slightly different strengths and weaknesses (John & Kieras, 1996).

The core point as it relates to cognitive architectures is that GOMS analysis is origin

based on a production rule analysis (Card, personal communication, 1999). Because this wil

up several times, a brief introduction to production systems is warranted. Production rules ar

THEN condition-action pairs, and a set of production rules (or simply “productions” or just

“rules”) and a computational engine that interprets those productions is called a production sy

In addition to productions, production systems contain some representation of the current sta
Byrne HoHCI chapter page 12

f a

ns can

ft”).

t a

 is

or

ard, et

lar

ginal

 most

the

t this

CI.

selves,

 of

f
This representation typically consists of a set of loosely-structured data elements such as

propositions or attribute-value pairs. This set is called the “working memory” or “declarative

memory.” Because “working memory” is also a psychological term with somewhat different

meaning in that literature, “declarative memory” will be used in all further discussions.

The operation of a production system is cyclic. On each cycle, the system first goes

through a pattern-matching process. The IF side of each production tests for the presence o

particular pattern in declarative memory. When the IF conditions of a production are met, the

production is said to fire and the actions specified on the THEN side are executed. The actio

be things like pressing a button or even some higher-level abstraction of action (e.g., “turn le

Actions also include modifying the contents of declarative memory, which usually means tha

different production or productions will match on the next cycle. At this abstract and purely

symbolic level, production systems are Turing complete and thus can compute anything that

computable (Newell, 1990), thus, they should be flexible enough to model the wide array of

computations performed by the human cognitive system.

This is relevant to cognitive architectures because most cognitive architectures are (

contain) production systems. GOMS was actually abstracted from production rule analysis. C

al. discovered that, for routine cognitive skills, the structure of the productions was quite simi

across tasks and a more abstract representation was possible. This representation is the ori

GOMS formulation. Thus, translating a GOMS analysis into production rules, the language of

cognitive architectures, is generally straightforward. Similarly, for routine cognitive skills, it is

often relatively simple to derive a GOMS analysis from the set of productions used to model

task. Models based on cognitive architectures can go well beyond routine cognitive skills, bu

connection has certainly influenced the evolution of research on cognitive architecture and H

This connection has also fed back into research and development of GOMS techniques them

such as NGOMSL (Kieras, 1988). NGOMSL (Natural GOMS Language) allows the prediction

learning time for the knowledge described in a GOMS model based on a theory of transfer o
Byrne HoHCI chapter page 13

il in

itch,

t

om

ns for

 of

ction

can be

 a

on

exity is

 that

 three-

al

nt

er

a new

le
training referred to as cognitive complexity theory (CCT), which will be described in more deta

the next section.

2.2 Cognitive Complexity Theory (CCT)

When someone has learned to perform a task with a particular interface and must sw

doing the same task with a new interface, how much better off will they be than someone jus

learning to do the task with the new interface? That is, how much is the knowledge gained fr

using the old interface “transferred” to using the new interface? This question has intrigued

psychologists for at least a century, and having some answers to this question has implicatio

training programs, user interface design, and many other areas. Cognitive complexity theory

(Bovair, Kieras, & Polson, 1990; Kieras & Polson, 1985) is a psychological theory of transfer

training applied to HCI. Most relevant to the current discussion, this theory is based on produ

rules. The major points of CCT are as follows:

• Knowledge of the procedures that people need to execute to perform routine tasks

represented with production rules. The relevant production rules can be generated based on

GOMS analysis of the task to be modeled.

• The complexity of a task will be reflected in the number and content of the producti

rules. When certain conventions are adopted about the style of those production rules, compl

reflected almost entirely in the number of rules.

• The time it takes to execute a procedure can be predicted with a production system

interprets those rules along with a set of typical operator times, e.g. the time it takes to type a

letter command. The production interpreter used in this work was not intended to be a gener

cognitive architecture, but the production system framework is certainly consistent with curre

architectures.

• The time it takes to learn a task is a function of the number of new rules that the us

must learn. “New” is clearly defined in this context. If the user already has a production, and

task requires a rule that is similar (again, similarity is well-defined based on the production ru

syntax), then the rule for the new task need not be learned.
Byrne HoHCI chapter page 14

 the

e, the

 just

ord

 could

two

 the

t of

e text

us

rning

dge)

s, and

l

e any

n

over a

s more

well.

see

d in

olson,
• Some predictions about errors and speedup with practice can also be gleaned from

contents of the production rules.

Obviously, this was an ambitious agenda and there are many subtleties. For exampl

notion of a “task” as the term was used in the description of CCT actually includes more than

the task at an abstract level. Consider a simple instance of a text-editing task, deleting the w

“redux” from the middle of a sentence. The actual commands needed to accomplish this task

be very different in different text editors, thus, modeling the “delete word” task would require

different sets of productions, one for each editor. That is, the necessary knowledge, and thus

production rules for representing it, are actually a function both of the task from the user poin

view (e.g. “delete word”) and the interface provided to accomplish the task. Transfer from on

editor to another therefore depends a great deal on the particulars of each interface. CCT th

predicts asymmetrical transfer: learning editor A after editor B should not be the same as lea

editor B after editor A.

CCT models, like a GOMS analysis, omit modeling many details of user behavior. In

general, anything that falls outside the domain of procedural knowledge (how-to-do-it knowle

is not modeled. This means that the model does not model motor actions such as keypresse

instead has a “DoKeystroke” primitive operator. Nor do CCT models model things like natura

language comprehension, clearly a requirement in text editing. CCT models also do not includ

model of the perceptual processes required by users--the model was simply given informatio

about the state of the display, and did not have to, for example, look to see if the cursor was

particular character. This is the same scope as a typical GOMS model, though a CCT model i

formalized and quantitative than the GOMS models described by Card, et al. (1983).

In spite of these limitations (or perhaps in part because these limitations allowed the

researchers to concentrate on the most central aspects of the phenomena), CCT fared very

Numerous laboratory experiments provide empirical support for many of the claims of CCT (

especially Bovair, Kieras, & Polson, 1990). The CCT framework was developed and validate

greatest detail to pre-GUI text editing, but it has also been applied to menu-based systems (P
Byrne HoHCI chapter page 15

d

ting

 a

city

ands,

in on a

e the

, and

ition,

PS-

at short

rchies

depth,

ual

rarchy.

ror

nd

r with

tively

ter the
Muncher, & Engelbeck, 1986) and a control panel device (Kieras & Bovair, 1986). Singley an

Anderson (1989) provide a strikingly similar analysis of transfer of training as well as suppor

empirical results, lending credence to the CCT analysis. CCT was certainly one of the most

prominent early successes of computational modeling in HCI.

2.3 CAPS

CAPS (collaborative activation-based production system; Just & Carpenter, 1992) is

cognitive architecture designed to model individual differences in working memory (WM) capa

and the effects of working memory load. This speciality is applicable to a number of HCI

situations. Certainly, some kinds of user interfaces can create excessive working memory dem

for example, phone-based interfaces. In phone-based interaction (PBI), options do not rema

screen or in any kind of available storage; rather, users are forced to remember the options

presented. This seems like a prime candidate for modeling with a system designed to captur

effects of working memory demand, and this is exactly what Huguenard, Lerch, Junker, Patz

Kass (1997) did. Their data showed that, contrary to guideline advice and most people’s intu

restricting phone menus to only a few (three) items each does not reduce error rates. The CA

based model provided a clear theoretical account of this phenomenon. The model showed th

menus are not necessarily better in PBI because of two side-effects of designing menu hiera

with few options at each level. First, for the same number of total items, this increases menu

which creates working memory demand. Second, with fewer items at each level, each individ

item has to be more general and therefore more vague, especially at the top levels of the hie

This forces users to spend WM resources on disambiguating menu items when they are in a

situation where WM demands outstrip supply.

Another application of CAPS that is HCI-relevant is the account of postcompletion er

provided by Byrne and Bovair (1997). What is a postcompletion error? Anecdotal evidence a

intuition suggests that, when interacting with man-made artifacts, certain kinds of errors occu

greater frequency than others. In particular, there is an entire family of errors that seem intui

common, these are errors that people make when there is some part of a task that occurs af
Byrne HoHCI chapter page 16

orts

:

when

; the

al is

is

re

ank,

others.

on, &

e

ation of

tive

them

e truly

vation

ing
main goal of the task has been accomplished (hence “postcompletion”). Nearly everyone rep

having made an error of this type at one time or another. Here are two prototypical examples

• Leaving the original on the glass of a photocopier. The main goal one generally has

using a photocopier is “get copies” and this goal is satisfied before one remove the original

document. This error is less common now that many photocopiers include document feeders

more current equivalent is leaving a document on the glass in a flatbed scanner.

• Leaving one’s bank card in an automated teller machine (ATM). Again, the main go

something on the order of “get cash,” and in many ATMs card removal occurs after the cash

dispensed. This error was common enough in the first generation of ATMs that many ATMs a

now designed in such a way that this error is now impossible to make.

There are many others, such as leaving the gas cap off after filling up the car’s gas t

leaving change in vending machines, and more—most readers can probably think of several

While numerous HCI researchers were aware of this class of error (e.g. Young, Barnard, Sim

Whittington, 1989; Polson, et al., 1994), no account had previously been developed which

explained why this type of error is persistent, yet not so frequent that it occurs every time. Th

CAPS model provides just such an account, and can serve as a useful example of the applic

a cognitive architecture to an HCI problem.

Like most other production systems, CAPS contains two kinds of knowledge, declara

memory and productions. Declarative memory elements in CAPS also have associated with

an activation value, and elements below a threshold level of activation cannot be matched by

productions’ IF sides. Additionally, unlike most other production systems, the THEN side of a

CAPS production may request that the activation of an element be incremented. For this to b

useful in modeling working memory, there is a limit to the total amount of activation available

across all elements. If the total activation exceeds this limit, then all elements lose some acti

to bring the total back within the limit. This provides a mechanism for simulating human work

memory limitations.
Byrne HoHCI chapter page 17

ents

ocopier

t the

tops.

 Thus,

king

ls.

e

ir

ne out.

 and

e case.

d, and

ather

ularly

ion

d each

ey

y may

r or

ifferent
In Byrne and Bovair’s postcompletion error model, there is a production which increm

the activation of subgoals when the parent goal is active and unsatisfied. So, to use the phot

example, the “get copies” subgoal supplies activation to all the unfulfilled subgoals throughou

task. However, when the “get copies” goal is satisfied, the activation supply to the subgoals s

Because the goal to remove the original is a subgoal of that goal, it loses its activation supply.

what the model predicts is that the postcompletion subgoals are especially vulnerable to wor

memory load, and lower-capacity individuals are more “at risk” than higher-capacity individua

Byrne and Bovair conducted an experiment to test this prediction, and the data supported th

model.

This is a nice demonstration of the power of cognitive architectures. Byrne and Bova

neither designed nor implemented the CAPS architecture, but were able to use the theory to

construct a model that made empirically-testable predictions, and those predictions were bor

While CAPS is unlikely to guide much future HCI work (its designers are no longer developing

supporting it because they have gone in a different direction), it provides an excellent exampl

3. Contemporary Architectures

There are currently cognitive architectures that are being actively developed, update

applied to HCI-oriented tasks. Three of the four most prominent are production systems, or r

are centrally built around production systems. These three are Soar, EPIC, and ACT-R (partic

ACT-R/PM). While all contain production rules, the level of granularity of an individual product

rule varies considerably from architecture to architecture. Each one has a different history an

one has a unique focus. They all share a certain amount of intellectual history; in particular th

have all been influenced one way or another by the MHP, and by each other. At some level the

have more similarities than differences, whether this is because they borrow from one anothe

because the science is converging is still an open question. The fourth system is somewhat d

than these three production system models and will be considered first.
Byrne HoHCI chapter page 18

re or

ing

als of

rs

t

ed to

ewhat

., the

erates

rlap.

l.

e

hase,

mple,

ill be

ed.

inal C-

es

n
3.1 LICAI/CoLiDeS

LICAI (Kitajima & Polson, 1997) is a good example of a non-production system

architecture and has been used in an HCI context. All the work discussed up to this point mo

less assumes that the users being modeled are relatively skilled with the specific interface be

used; these approaches do a poor job of modeling relatively raw novices. One of the main go

LICAI is addressing this concern. The paradigm question addressed by LICAI is “how do use

explore a new interface?”

Unlike the other architectures discussed, LICAI’s central control mechanisms are no

based on a production system. Instead, LICAI is built around an architecture originally design

model human discourse comprehension, construction-integration (C-I; Kintsch, 1998). Like

production systems, C-I’s operation is cyclic. However, what happens on those cycles is som

different than what happens in a production system. Each cycle is divided into two phases,

construction and integration (hence the name). In the construction phase, an initial input (e.g

contents of the current display) is fed into a weakly-constrained rule-based process which gen

a network of propositions. Items in the network are linked on the basis of their argument ove

For example, the goal of “graph data” might be represented with the proposition (PERFORM

GRAPH DATA). Any proposition containing GRAPH or DATA would thus be linked to that goa

Once the construction phase completes, the system is left with a linked network of

propositions. What follows is the integration phase, in which activation propagates through th

network in a neural network-like fashion. Essentially, this phase is a constraint-satisfaction p

which is used to select one of the propositions in the network as the “preferred” one. For exa

the system may need to select the next action to perform while using an interface. Action

representations will be added to the network during the construction phase, and an action w

selected during the integration phase. The action will be performed, and the next cycle initiat

Various C-I models have used this basic process to select things other than actions. The orig

I system used these cycles to select between different interpretations of sentences.

There are three main kinds of cycles in LICAI: one type selects actions, one generat

goals, and one selects goals. This is in contrast to how most HCI tasks have been modeled i
Byrne HoHCI chapter page 19

ledge

who

ed to

UI

s. One

se

HCI

to be

re

out

hly the

lassified

onym)

hile

th

ult—
production system architectures; in such systems, the goals are usually included in the know

given to the system. This is not true in LICAI, in fact, the knowledge given to LICAI by the

modelers is quite minimal. For the particular application of LICAI, which was modeling users

knew how to use a Macintosh for other tasks (e.g. word processing) and were now being ask

plot some data using a Macintosh program called CricketGraph (one group of users actually

worked with Microsoft Excel), it included some very basic knowledge about the Macintosh G

and some knowledge about graphing. Rather than supply the model with the goal hierarchy,

Kitajima and Polson gave the model the same somewhat minimal instructions as the subject

of the major jobs of the LICAI model, then, was to generate the appropriate goals as they aro

while attempting to carry out the instructions.

Again, this illustrates one of the strengths of using a cognitive architecture to model

tasks. Kitajima and Polson did not have to develop a theory of text comprehension for LICAI

able to comprehend the instructions given to subjects, since LICAI is based on an architectu

originally designed to do text comprehension, they essentially got that functionality gratis.

Additionally, they did not include

 just any text comprehension engine, but one that makes empirically-validated predictions ab

how people represent the text they read. Thus, the claim that the model started out with roug

same knowledge as the users is highly credible.

The actual behavior of the model is also revealing, as it exhibits many of the same

exploratory behaviors as the users. First, the model pursues a general strategy that can be c

as label-following (Polson, et al., 1994). The model, like the users, had a strong tendency to

examine anything on the screen that had a label matching, or nearly matching (i.e., a near syn

a key word in the task instructions. When the particular subtask being pursued by the model

contained steps which were well-labeled, the users were rapid, which the model predicted. W

this prediction is not counter-intuitive, it is important to note that LICAI is not programmed wi

this strategy. This strategy naturally emerges through the normal operation of construction-

integration through the linkages created by shared arguments. The perhaps less intuitive res
Byrne HoHCI chapter page 20

tion

 only if

l match

sers or

ral

ouble-

xcel

hat in a

 the

ese

d these

 objects

ts are

ties

on

t

y

ion-

d

 more

er &
modeled successfully by LICAI—is the effect of the number of screen objects. During explora

in this task, users were slower to make choices if there were more objects on the screen, but

those items all had what were classified as poor labels. In the presence of good labels (litera

or near synonym), the number of objects on the screen did not affect decision times, for the u

for LICAI.

The programmers who implemented the programs operated by the users put in seve

clever direct manipulation tricks. For example, to change the properties of a graph axis, one d

clicks on the axis and a dialog box specifying the properties of that axis appears. Microsoft E

has some functionality that is most easily accessed by drag-and-drop. Fanzke (1994) found t

majority of first encounters with these kind of direct manipulations, users required hints from

experimenter to be able to continue, even after 2 minutes of exploration. LICAI also fails at th

interactions because there are no appropriate links formed between any kind of task goal an

unlabeled, apparently static screen objects during the construction phase. Thus, these screen

tend to receive little activation during the integration phase, and actions involving other objec

always selected.

Overall, LICAI does an excellent job of capturing many of the other empirical regulari

in exploratory learning of a GUI interface. This is an important issue for many interfaces,

particularly any interface that is aimed at a walk-up-and-use audience. While currently comm

walk-up-and-use interfaces, such at ATMs, provide simple enough functionality that this is no

always enormously difficult, this is not the case for more sophisticated systems, such as man

information kiosks.

More recently, LICAI has been updated (and renamed to CoLiDeS, for Comprehens

based Linked model of Deliberate Search; Kitajima, Blackmon, & Polson, 2000) to handle

interaction with Web pages. This involves goals that are considerably less well-elucidated an

interfaces with a much wider range of semantic content. In order to help deal with these

complexities, LICAI has been updated with a more robust attentional mechanism and a much

sophisticated notion of semantic similarity based on Latent Semantic Analysis (LSA; Landau
Byrne HoHCI chapter page 21

 on

r the

irolli

 ACT-

rge,

90),

l.,

nal

evel.

ssor,

e,

ators.

t of all

en state

his is a

ulated

ision

oar

emory

h.

 time,

emory
Dumais, 1994). CoLiDeS shows the effects of poor labels and poor hierarchical organization

Web navigation, getting “lost” in much the same way as real users. This is a promising tool fo

analysis of semantically rich but functionality-poor domains such as the Web. Interestingly, P

and Card (1999) have implemented a similar model in a modified version of ACT-R they term

IF, where the IF stands for “information forager.” Whether these systems will ultimately conve

diverge, or simply complement one another is an open question.

3.2 Soar

The development of Soar is generally credited to Allan Newell (especially Newell, 19

and Soar has been used to model a wide variety of human cognitive activity from syllogistic

reasoning (Polk & Newell, 1995) to flying combat aircraft in simulated wargames (Jones, et a

1999). Soar was Newell’s candidate “unified theory of cognition” and was the first computatio

theory to be offered as such.

While Soar is a production system, it is possible to think of Soar at a more abstract l

The guiding principle behind the design of Soar is Principle P9 from the Model Human Proce

the Problem Space Principle. Soar casts all cognitive activity as occurring in a problem spac

which consists of a number of states. States are transformed through the application of oper

Consider Soar playing a simple game like tic-tac-toe as player X. The problem space is the se

the states of the tic-tac-toe board—not a very large space. The operators available at any giv

of that space are placing an X at any of the available open spaces on the board. Obviously, t

simplified example; the problem space and the available operators for flying an F-16 in a sim

wargame are radically more complex.

Soar’s operation is also cyclic, but the central cycle in Soar’s operation is called a dec

cycle. Essentially, on each decision cycle, Soar answers the question “what do I do next?” S

does this in two phases. First, all productions that match the current contents of declarative m

fire. This usually causes changes in declarative memory, so other productions may now matc

Those productions are allowed to fire, and this continues until no new productions fire. At this

the decision procedure gets executed, in which Soar examines a special kind of declarative m
Byrne HoHCI chapter page 22

perator

mines

y

 cycle

all

.

ning

ling

ersal

ot

be no

e best

asse is

tate in

rs

ators. In

er new

dge

od

tle

t on in

hich the

, or

ough
element, the preference. Preferences are statements about possible actions, for example “o

o3 is better than o5 for the current operator” or “s10 rejected for supergoal state s7.” Soar exa

the available preferences and selects an action. Thus, each decision cycle may contain man

production cycles. When modeling human performance, the convention is that each decision

lasts 50 ms, so productions in Soar are very low-level, encapsulating knowledge at a very sm

grain size. This distinguishes Soar productions from those found in other production systems

Other than the ubiquitous application of the problem space principle, Soar’s most defi

characteristics come from two mechanisms developed specifically in Soar, universal subgoa

and a general-purpose learning mechanism. Because the latter depends on the former, univ

subgoaling will be described first. One of the features of Soar’s decision process is that it is n

guaranteed to have an unambiguous set of preferences to work with. Alternately, there may

preferences listing an acceptable action. Perhaps the system does not know any acceptable

operators for the current state, or perhaps the system lacks the knowledge of how to apply th

operator. Whatever the reason, if the decision procedure is unable to select an action, an imp

said to occur. Rather than halting or entering some kind of failure state, Soar sets up a new s

a new problem space with the goal of resolving the impasse. For example, if multiple operato

were proposed, the goal of the new problem space is to choose between the proposed oper

the course of resolving one impasse, Soar may encounter another impasse and create anoth

problem space, and so on. As long as the system is provided with some fairly generic knowle

about resolving degenerate cases (e.g. if all else fails, choose randomly between the two go

operators), this universal subgoaling allows Soar to continue even in cases where there is lit

knowledge.

Learning in Soar is a by-product of universal subgoaling. Whenever an impasse is

resolved, Soar creates a new production rule. This rule summarizes the processing that wen

the substate. The resolution of an impasse makes a change to the superstate (the state in w

impasse originally occurred), this change is called a result. This result becomes the condition

THEN, side of the new production. The condition, of IF, side of the production is generated thr
Byrne HoHCI chapter page 23

rns as

ith

passes

ns.

01).

 she

se data

s and

tivity.

mer.

nd

t rather

is, a

sive,

ginally

ry

er a

d

ms.
a dependency analysis by looking at any declarative memory item matched in the course of

determining this result. When Soar learns, it learns only new production rules, and it only lea

the result of resolving an impasse. It is important to realize that an impasse is not equated w

failure or an inability to proceed in the problem-solving, but may arise simply because, for

example, there are multiple good actions to take and Soar has to choose one of them. Soar im

regularly when problem-solving and thus learning is pervasive in Soar.

Not surprisingly, Soar has been applied to a number of learning-oriented HCI situatio

One of the best examples is the recent work by Altmann (Altmann & John, 1999; Altmann, 20

Altmann collected approximately 80 minutes of data from an experienced programmer while

worked at understanding and updating a large computer program by examining a trace. The

included verbal protocols (i.e., thinking aloud) as well as a log of the actions taken (keypresse

scrolling). About once every three minutes, the programmer scrolled back to find a piece of

information that had previously been displayed. Altmann constructed a Soar model of her ac

This model is a kind of comprehension model which attempts to gather information about its

environment; it is not a complete model of the complex knowledge of an experienced program

The model attends to various pieces of the display, attempting to comprehend what it sees, a

issues commands. Comprehension in this context is not the same as in C-I based models, bu

is manifested in this model as an attempt to retrieve information about the object being

comprehended.

When an item is attended, this creates what Altmann termed an episodic trace, that

production that notes that the object was seen at a particular time. Because learning is perva

Soar creates many new rules like this. However, because of the dependency-based learning

mechanism, these new productions are quite specific to the context in which the impasse ori

occurred. Thus, the “index” into the model’s (fairly extensive) episodic memory consists of ve

specific cues, usually found on the display. Seeing a particular variable name is likely to trigg

memory for having previously seen that variable name. Importantly, this memory is generate

automatically, without need for the model to deliberately set goals to remember particular ite
Byrne HoHCI chapter page 24

1)

d

it is

hat

se of

ll

ictive

e, it is

itive

.

nd thus

 most

isodic

g.

the

asic

 very

ne

 the
While Altmann and John (1999) is primarily a description of the model, Altmann (200

discusses some of the HCI ramifications for this kind of always-on episodic memory trace, an

discusses this in terms of display clutter. While avoiding display clutter is hardly new advice,

generally argued that it should be avoided for visual reasons (e.g., Tullis, 1983). However, w

Altmann’s model shows is that display clutter can also have serious implications for effective u

episodic memory. Clutter can create enormous demands for retrieval. Since more objects wi

generally be attended on a cluttered display, the episodic trace will be large, lowering the pred

validity for any single cue. While this certainly seems like a reasonable account on the surfac

unlikely that kind of analysis would have been generated if it had not been guided by a cogn

architecture which provided the omnipresent learning of Soar.

A second implication of Altmann’s model is the surprising potential utility of browsing

Simple browsing creates an episodic trace of the objects encountered, regardless of intent, a

browsing a complex interface may pay off later in the learning curve. Of course, for this to be

effective, the interface has to be structured correctly in order to best support retrieval of the ep

trace, and it is not clear exactly what the best organization would be to support such browsin

Soar has also been used to implement models of exploratory learning, somewhat in

spirit of LICAI. There are two prominent models here, one called IDXL (Rieman, Young, &

Howes, 1996) and a related model called Task-Action learner (Howes & Young, 1996). These

models both attempt to learn unfamiliar GUI interfaces. IDXL operates in the same graphing

domain as LICAI, while the Task-Action Leaner starts with even less knowledge and learns b

GUI operations such as how to open a file. For brevity, only IDXL will be described in detail.

IDXL goes through many of the same scanning processes as LICAI, but must rely on

different mechanisms for evaluation since Soar is fundamentally different than LICAI. IDXL

models evaluation of various display elements as search through multiple problem spaces, o

which is an internal search through Soar’s internal knowledge and the other a search through

display. As items are evaluated in the search, Soar learns productions which summarize the

products of each evaluation. At first, search is broad and shallow, with each item receiving a
Byrne HoHCI chapter page 25

,

f

ded to

 to

users

menu

he

driven

lecting

rtain

 the

n, and

 on a

s is

is
minimum of elaboration. However, that prior elaboration guides the next round of elaboration

gradually allowing IDXL to focus in on the “best” items. This model suggests that a number o

ways in which interface designers could thus help learners acquire a new the knowledge nee

utilize a new interface. Like the LICAI work, the IDXL work highlights the need for good labels

guide exploration. A more radical suggestion is based on one of the more subtle behavior of

and IDXL. When exploring and evaluating alternatives, long pauses often occur on particular

items. During these long pauses, IDXL is attempting to determine the outcome of selecting t

menu item being considered. Thus, one suggestion for speeding up learning of a new menu-

GUI is to detect such pauses, and show (in some easily-undoable way) what the results of se

that item would be. For instance, if choosing that item brings up a dialog box for specifying ce

options, that dialog box could be shown in some grayed-out form, and would simply vanish if

user moved off that menu item. This would make the evaluation of the item much more certai

would be an excellent guide for novice users. This is not unlike ToolTips for toolbar icons, but

much larger scale.

A model that does an excellent job of highlighting the power of cognitive architecture

NTD-Soar (Nelson, Lehman, & John, 1994). NTD stands for “NASA Test Director”, who

...is responsible for coordinating many facets of the testing and preparation of the

Space Shuttle before it is launched. He must complete a checklist of launch

procedures that, in its current form, consists of 3000 pages of looseleaf

manuals...as well as graphical timetables describing the critical timing of

particular launch events. To accomplish this, the NTD talks extensively with

other members of launch team over a two-way radio... In addition to maintaining

a good understanding of the status of the entire launch, the NTD is responsible

for coordinating troubleshooting attempts by managing the communication

between members of the launch team who have the necessary expertise. (p. 658)

Constructing a model that is even able to perform this task at all is a significant

accomplishment. Nelson, Lehman, and John were able to not only build such a model but th
Byrne HoHCI chapter page 26

ed by

n

els.

ge

g the

ey did

f those

till a

x task,

 to

e very

 of the

of that

 of the

ers in

l. 1999).

te.

pter

well as

, and
model was able to produce a timeline of behavior which closely matched the timeline produc

the actual NTD being modeled. That is, the ultimate result was a quantitative model of huma

performance, and an accurate one at that.

It is unlikely that such an effort could have been accomplished without the use of an

integrated cognitive architecture. This was a Soar model which made use of other Soar mod

Nelson, Lehman, and John did not have to generate and implement theory of natural langua

understanding to model the communication between the NTD and others, or the NTD readin

pages in the checklist, because one had already been constructed in Soar (Lewis, 1993). Th

not have to construct a model of visual attention to manage the scanning and visual search o

3000 pages, because such a model already existed in Soar (Weismeyer, 1992). There was s

great deal of knowledge engineering that had to go on to understand and model this comple

but using an integrated architecture greatly eased the task of the modelers.

While this modeling effort was not aimed at a particular HCI problem, it is not difficult

see how it would be applicable to one. If one wanted to replace the 3000-page checklist with

something like a personal digital assistant (PDA), how could the PDA be evaluated? There ar

few NTD’s in the world, and it is unlikely that they would be able to devote much time to

participatory design or usability testing. However, because an appropriate quantitative model

NTD exists, it should be possible to give the model a simulated PDA and assess the impact

change on the model’s performance. Even if the model does not perfectly capture the effects

change, it is likely that the model would identify problem areas and at least guide the develop

using any time they have with an actual NTD.

Soar has also been used as the basis for simulated agents in wargames (Jones, et a

This model (TacAir-Soar) participates in a virtual battlespace in which humans also participa

TacAir-Soar models take on a variety of roles in this environment, from fighter pilots to helico

crews to refueling planes. Because they are based on a cognitive architecture, they function

agents in this environment. Their interactions are more complex than simple scripted agents

they can interact with humans in the environment with English natural language. This is an
Byrne HoHCI chapter page 27

t is to

,

with

 in the

ot

and

xter,

icular

r, Soar

ortant

plex

 other

point

dels

d,

 even

d, in

., one

ily on

ssing
ambitious model containing over 5000 production rules. One of the major goals of the projec

make sure that TacAir-Soar produces human-like behavior because this is critical to their role

which is to serve as part of training scenarios for human soldiers. In large-scale simulations

many entities, it is much cheaper to use computer agents than to have humans fill every role

simulation. While agents (other than the ubiquitous and generally-disliked paper clip) have n

widely penetrated the common desktop interface, this remains an active HCI research area,

future agents in other roles could also be based on cognitive architecture rather than more

engineering-oriented AI models.

There have been many other applications of Soar to HCI-related problems. Ritter, Ba

Jones, and Young (2000) report on a number of Soar models of GUI-based tasks. So the

applicability of Soar to the development of a quantitative theory of HCI is clear. Soar has part

strengths in this regard relative to the other architectures covered in this chapter. In particula

is more focussed on learning than any of the other systems, and learnability is clearly an imp

property for many user interfaces. Second, it is known that Soar models scale up to very com

tasks, such as NTD-Soar and TacAir-Soar; tasks of this complexity have not been modeled in

architectures.

3.3 EPIC

With the possible exception of the NTD model, all of the models discussed up to this

have been almost purely cognitive models. That is, the perception and action parts of the mo

have been handled in an indirect, abstract way. These models focus on the cognition involve

which is not surprising given the generally cognitive background of these systems. However,

the original formulation of the MHP included processors for perception and motor control. An

fact, user interfaces have also moved from having almost exclusively cognitive demands (e.g

had to remember or problem-solve to generate command names) to relying much more heav

perceptual-motor capabilities. This is one of the hallmarks of the GUI, the shift to visual proce

and direct manipulation rather than reliance on complex composition of commands.
Byrne HoHCI chapter page 28

tem

i and

ras

of the

ilarity

h-

al-

ed in

 there

IC.

 to be

e-or-

 in the

al

ssor

hould

sor is

nds.

isual

 “A,”

ail, and
However, providing accurate quantitative models for this kind of activity requires a sys

with detailed models of human perceptual and motor capabilities. This is one of the major foc

contributions of EPIC (for executive process interactive control). EPIC is the brainchild of Kie

and Meyer (see especially 1996, 1997; Kieras, Wood, & Meyer, 1997). The overall structure

processors and memories in EPIC is shown in Figure 2. This certainly bears some surface sim

to the MHP, but EPIC is substantially more detailed. EPIC was explicitly designed to pair hig

fidelity models of perception and motor mechanisms with a production system. The perceptu

motor processors represent a new synthesis of the human performance literature while the

production system is the same one used in the CCT work discussed earlier.

---------- insert Figure 2 about here ----------

Constructing a model in EPIC thus requires specification of both the knowledge need

the form of production rules as well as some relevant perceptual-motor parameters. Because

are a number of processors, there are quite a number of (mostly numeric) parameters in EP

There are two types of parameters in EPIC: standard, which are system parameters believed

fixed across all tasks, and typical, which are free to vary across task situations, but have mor

less conventional values. A standard parameter in EPIC is the duration of a production cycle

Cognitive Processor, this is 50 ms. An example of a typical value is the time it takes the Visu

Processor to recognize that a particular shape represents a right arrow, which is 250 ms.

All the processors in EPIC run in parallel with one another. So, while the Visual Proce

is recognizing an object on the screen, the Cognitive Processor can be deciding what word s

be spoken in response to some other input, while at the same time the Manual Motor proces

pressing a key. The information flow is typical of traditional psychological models, with

information coming in through the eyes and ears, and outputs coming from the mouth and ha

More specifically, what is modeled in each of the processors is primarily time course. EPIC’s V

Processor does not take raw pixels as input and compute that those pixels represent a letter

instead, it determines whether the object on the screen can be seen and at what level of det

how long it will take for a representation of that object to be delivered to EPIC’s declarative
Byrne HoHCI chapter page 29

tter can

ry at

or

time it

ted it.

ement is

and the

ments

l. If

ent is

r a

ich

 time,

ecuting

 the

o fire

fire on

 which

d
memory once the letter becomes available to the Visual Processor. The appearance of the le

actually cause a number of different elements to be deposited into EPIC’s declarative memo

different times, for example, information about the letter’s color will be delivered before

information about the letter’s identity.

Similarly, on the motor side, EPIC does not simulate the computation of the torques

forces needed to produce a particular hand movement. Instead, what EPIC computes is the

will take for a particular motor output to be produced after the Cognitive Processor has reques

This is complicated by the fact that movements happen in phases. Most importantly, each

movement includes a preparation phase and an execution phase. The time to prepare a mov

dependent on the number of movement features that must be prepared for each movement

features of the last movement prepared. Features that have been prepared for the previous

movement can sometimes be re-used, saving time. EPIC can make repeated identical move

rapidly because there is no feature preparation time necessary if the movements are identica

they are not identical, the amount of savings is a function of how different the current movem

from the previous one. After being prepared, a movement is executed. The execution time fo

movement corresponds roughly to the time it physically takes to execute the movement; the

execution time for aimed movements of the hands or fingers are governed by Fitts’s Law, wh

was described in section 2.1. EPIC’s motor processors can only prepare one movement at a

and can only execute one movement at a time, but may be preparing one movement while ex

another. Thus, in some tasks it may be possible to pipeline movements effectively in order to

generate very rapid sequences of movements.

EPIC’s Cognitive Processor is a production system, the same one that was used for

earlier CCT work. One highly salient feature of this system is that multiple rules are allowed t

on a production cycle. In fact, there is no upper bound on the number of productions that can

a cycle. Productions in this system are at a much higher grain size than productions in Soar,

gives EPIC a highly parallel quality at all levels. That is, all the processors work in parallel an

EPIC’s cognitive processor is itself capable of parallel processing.
Byrne HoHCI chapter page 30

 task

r

 one

e

tasks

te in

I is

-motor

d into

n

the

ance

e

has

y of

eling

jor

gical

ically

r a

,

s the

le’s
This allows EPIC particular leverage in multiple-task situations. When more than one

is being performed, the tasks can execute in parallel. However, many of the perceptual-moto

processors are effectively serial. People only have one set of eyes that can only be aimed at

place at a time, so if multiple tasks are ongoing and they both require the eyes, there must b

something that arbitrates. In EPIC, this additional knowledge about how to manage multiple

is termed “executive” knowledge, and the productions which implement this knowledge execu

parallel with the productions implementing the task knowledge.

Why is all this machinery and extra knowledge necessary? Because the world of HC

changing. The GUI forced designers and analysts to consider more seriously the perceptual

constraints, and the propagation of computers with user interfaces away from the desktop an

mobile phones, kiosks, automobiles, and many, many other places creates a huge demand o

people’s ability to multi-task. Multiple-task issues have largely gone unmodeled and outside

theoretical scope of most psychological accounts in HCI, at least before EPIC.

While LICAI and Soar have not been adequately equipped to deal with high-perform

perception and action components of many tasks, EPIC is not equipped to handle some of th

issues covered by other architectures. In particular, EPIC does not include any learning

mechanisms, so it would be difficult to generate EPIC models for many of the domains Soar

approached successfully. However, this is not a fatal shortcoming, as there are a wide variet

domains in which learning is not an enormously key component and where high-fidelity mod

of perception and action, along with multiple-tasking, are central.

These are the kinds of domains to which EPIC has been applied. One of the first ma

applications of EPIC was to a deceptively simple dual-task paradigm known as the psycholo

refractory period (or PRP; see Meyer & Kieras, 1997). In this task, laboratory subjects are typ

confronted with two choice reaction time tasks, something on the order of “either a red light o

green light will appear, if it’s red, hit the ‘L’ key, if it’s green, hit the ‘J’ key.” This sounds simple

but the empirical literature is rich and shows a variety of subtle effects, for which EPIC provide

first unified account. Critically, what the EPIC models of these experiments show is that peop
Byrne HoHCI chapter page 31

his

 short-

s (or

eone

number

the first

tant in

ds and

ften

 those

 a

ly

ted in

ho

tomers

his is

)

e, and

dal.

 data
low-level strategies for scheduling the tasks play a large role in determining performance in t

simple paradigm.

EPIC has also been used to model some of the classic psychological results from the

term memory (or working memory) literature (Kieras, Meyer, Muller, & Seymour, 1999). This

concerns the question of how much people can remember when they repeat a string of word

numbers) to themselves. For example, when someone reads off a telephone number to som

else who has to dial that number a few moments later, the person who has to remember the

often speaks the number repeatedly. This is called “articulatory rehearsal” in the psychology

literature, and while the phenomenon had been described in detail over the years, EPIC was

serious quantitative model of this process. An accurate model of this process is clearly impor

HCI applications, as many interfaces force people to remember many things over short perio

rehearsal is a likely response to that demand. The field should have a better answer to

understanding this problem than simply an admonition to “reduce working memory demand.”

While such an admonition is certainly good advice, more precise performance prediction is o

warranted.

EPIC has been used to model several tasks with a more HCI-oriented flavor. One of

tasks is menu selection (Kieras & Meyer, 1997; Hornof & Kieras, 1997, 1999), but for brevity

detailed description of these models will be omitted. Another application of EPIC that definite

merits mention is the model of telephone assistance operators (TAOs), data originally presen

Gray, John, and Atwood (1993). When a telephone customer dials “0,” a TAO is the person w

answers. The TAOs modeled here sat at a “dumb terminal” style workstation and assisted cus

in completing telephone calls. In particular, TAOs determine how calls should be billed, and t

done by speaking to the customer. The detailed EPIC models (Kieras, Wood, & Meyer, 1997

covered a subset of the possible billing types.

This provided a good test of EPIC because the task is performed under time pressur

seconds—actually, milliseconds—counted in task performance. Second, this task is multimo

The TAO must speak, type, listen, and look at a display. Third, very fine-grained performance
Byrne HoHCI chapter page 32

reader

 just

zing

 the

ints,

del

in the

cess

nting

less of

priori

-level

er

hich

 very

ds

priate

y by

l

 is one

duling

 in
were available to help guide model construction. By now it should come as no surprise to the

that it was possible to construct an EPIC model that did an excellent job of modeling the time

course of the TAO’s interaction with the customer. However, this modeling effort went beyond

that and provided some insight into the knowledge engineering problem facing modelers utili

cognitive architectures as well.

Like other production system models, EPIC provides a certain amount of freedom to

modeler in model construction. While the architecture used provides certain kinds of constra

and these constraints are critical in doing good science and affecting the final form of the mo

(Howes & Young, 1997), the modeler does have some leeway in writing the production rules

model. This is true even when the production rule model is derived from another structured

representation such as a GOMS model, which was the case in the TAO model. In EPIC, it is

possible to write a set of “aggressive” productions which maximize the system’s ability to pro

things in parallel, while it is also possible to write any number of less aggressive sets represe

more conservative strategies. EPIC will produce a quantitative performance prediction regard

the strategy, but which kind of strategy should the modeler choose? There is generally no a

basis for such a decision and it is not clear that people can accurately self-report on such low

decisions.

Kieras, Wood, and Meyer (1997) generated an elegant approach to this problem, lat

termed “bracketing” (Kieras & Meyer, 2000). The idea is this: construct two models, one of w

is the maximally aggressive version. At this end of the strategy spectrum, the models contain

little in the way of cognition. The Cognitive Processor does virtually no deliberation and spen

most of its cycles simply reading off perceptual inputs and immediately generating the appro

motor output. This represents the “super-expert” whose performance is limited almost entirel

the rate of information flow through the peripherals. At the other end of the spectrum, a mode

incorporating the slowest-reasonable strategy is produced. The slowest-reasonable strategy

where the basic task requirements are met, but with no strategic effort made to optimize sche

to produce rapid performance. The idea is that observed performance should fall somewhere
Byrne HoHCI chapter page 33

ge for

s that

s

odel.

cal

ted in

what

e

ne

 could

hical

 TAOs

ntrol

ins do

nted

r

nd

e

n their

tyle

The
between these two extremes. Different users will tend to perform at different ends of this ran

different tasks, so this is an excellent way to accommodate some of the individual difference

are always observed in real users.

What was discovered by employing this bracketing procedure to the TAO models wa

surprising. Despite the fact that the TAOs were under considerable time pressure and were

extremely well-practiced experts, their performance rarely approached the fastest possible m

In fact, their performance most closely matched a version of the model termed the “hierarchi

motor-parallel model.” In this version of the model, eye, hand and vocal movements are execu

parallel with one another when possible, and furthermore, the motor processor is used some

aggressively, preparing the next movement while the current movement was in progress. The

primary place where EPIC could be faster but the data indicated the TAOs were not was in th

description of the task knowledge. It is possible to represent the knowledge for this task as o

single, flat GOMS method with no use of subgoals. On the other hand, the EPIC productions

represent the full subgoal structure or a more traditional GOMS model. Retaining the hierarc

representation—thus incurring time costs for goal management— provided the best fit to the

performance. This provides solid evidence for the psychological reality of the hierarchical co

structure inherent in GOMS analysis, since even well-practised experts in fairly regular doma

not abandon it for some kind of faster knowledge structure.

The final EPIC-only model that will be considered is the model of the task first prese

in Ballas, Heitmeyer, and Perez (1992). Again, this model first appeared in Kieras and Meye

(1997), but a richer version of the model is described in more detail later, in Kieras, Meyer, a

Ballas (2001). The display used is a split screen, on the right half of the display, the user is

confronted with a manual tracking task which is performed using a joystick. The left half of th

display is a tactical task in which the user must classify objects as hostile or neutral based o

behavior. There were two versions of the interface to the tactical task, one a command-line s

interface using a keypad and one a direct-manipulation-style interface using a touchscreen.
Byrne HoHCI chapter page 34

the

 fairly

 is the

en

r cases

to this

ach

t-

-

set by

he users

ewhere

pper

he

s made

load,

s

an

terface

ce.

raction

ise
performance measure of interest in this task is the time taken to respond to events (such as

appearance of a new object or a change in state of an object) on the tactical display.

This is again a task well-suited to EPIC because the perceptual-motor demands are

extensive. This is not, however, what makes this task so interesting. What is most interesting

human performance data: in some cases the keypad interface was faster than the touchscre

interface, and in many cases the two yielded almost identical performance, and in some othe

the touchscreen was faster. Thus, general claims about the superiority of GUIs do not apply

case, a more precise and detailed account is necessary.

EPIC provides just the tools necessary to do this. Two models were constructed for e

interface, again using the bracketing approach. The results were revealing. In fact, the fastes

possible models showed no performance advantage for either interface. The apparent direct

manipulation advantage of the touchscreen for initial target selection was almost perfectly off

some type-ahead advantages for the keypad. The reason for the inconsistent results is that t

generally did not operate at the speed of the fastest-possible model; they tended to work som

in between the brackets for both interfaces. However, they tended to work more toward the u

(slowest-reasonable) bracket for the touchscreen interface. This suggests an advantage for t

keypad interface, but the caveat is that the slowest-reasonable performance bound for the

touchscreen was faster than the slowest-possible for the keypad. Thus, any strategy change

by users in the course of doing the task, perhaps as a dynamic response to changes in work

could affect which interface would be superior at any particular point in the task. Thus, result

about which interface is faster are likely to be inconsistent—exactly what was found.

This kind of analysis would be impossible to conduct without a clear quantitative hum

performance model. Constructing and applying such a model also suggested an alternative in

which would almost certainly be faster than either, which is one using a speech-driven interfa

One of the major performance bottlenecks in the task was the hands, and so voice-based inte

should, in this case, be faster. Again, this could only be clearly identified with the kind of prec

quantitative modeling enabled by something like the EPIC architecture.
Byrne HoHCI chapter page 35

cture

 for the

tor

int.

 Soar

using

 initial

could

sk

.

Soar

d

f

ble in

oach

se

ly of

 is

f this
Despite this, the EPIC architecture is sometimes considered a less complete archite

than others because it does not include a learning mechanism, and thus would be unsuitable

kinds of interfaces and tasks modeled with LICAI or Soar. However, LICAI and Soar might

conversely be considered incomplete for their lack of detailed specification of perceptual-mo

processors; the definition of a “complete” cognitive architecture is not entirely clear at this po

However, this incompleteness has been acknowledged by both the EPIC community and the

community, and some experimentation has been done with a union of the two architectures,

Soar in place of EPIC’s Cognitive Processor. This fusion is called EPIC-Soar and some of the

results have been promising. For example, Chong and Laird (1997) demonstrated that Soar

indeed learn at least some of the complex executive knowledge needed to manage a dual-ta

situation (again, a combination of a tracking task and a simple decision-making task) in EPIC

Lallament and John (1998) looked at that same task with a slightly different version of EPIC-

which effectively negated the cognitive parallelism found in EPIC. One of the things they foun

was that the cognitive parallelism in EPIC was not actually necessary for performance in this

particular task; whether this is true for other tasks is still an open question. While the future o

EPIC-Soar is uncertain at this point, the fact that the integration was not only possible but via

that it has produced several running models is encouraging for a complete vision of cognitive

architecture.

3.4 ACT-R/PM

ACT-R/PM (Byrne & Anderson, 1998, in press; Byrne, 2001) represents another appr

to a fully unified cognitive architecture, combining a very broad model of cognition with rich

perceptual-motor capabilities. ACT-R/PM is an extension of the ACT-R cognitive architecture

(Anderson, 1993; Anderson & Lebiere, 1998) with a set of perceptual-motor modules like tho

found in EPIC (hence ACT-R/PM). ACT-R has a long history within cognitive psychology, as

various versions of the theory have been developed over the years. In general, the ACT fami

theories have been concerned with modeling the results of psychology experiments, and this

certainly true of the current incarnation, ACT-R. Anderson and Lebiere (1998) shows some o
Byrne HoHCI chapter page 36

c

e-

ward

y-

of

 issue

ever,

omain

stem

ever,

y fire

n

eory

t

value,

ng

anisms

with

y of

tion
range, covering areas as diverse as list memory (chapter 7), choice (chapter 8), and scientifi

reasoning (chapter 11).

However, ACT-R was not originally designed to model things like multimodal, multipl

task situations like those EPIC was designed to handle. While ACT-R was certainly moving to

application to GUI-style interactions (Anderson, Matessa, & Lebiere, 1997), it was not as full

developed as EPIC. In fact, the standard version of ACT-R is incapable of showing any kind

time-savings in even a simple dual-task situation because its operation is entirely serial. This

is corrected with the inclusion of the PM portion of ACT-R/PM. In many ways, ACT-R/PM is a

fusion of EPIC and ACT-R much in the spirit of EPIC-Soar. There are some differences, how

and the extent to which those differences result in serious differences in models in the HCI d

is not yet clear.

The ACT-R system at the heart of ACT-R/PM is, like EPIC and Soar, a production sy

with activity centered around the production cycle, which is also set at 50 ms in duration. How

there are many differences between ACT-R and the other architectures. First, ACT-R can onl

one production rule per cycle. When multiple production rules match on a cycle, an arbitratio

procedure called conflict resolution comes into play. Second, ACT-R has a well-developed th

of declarative memory. Unlike EPIC and Soar, declarative memory elements in ACT-R are no

simply symbols. Each declarative element in ACT-R also has associated with it an activation

which determines whether and how rapidly it may be accessed. Third, ACT-R contains learni

mechanisms, but is not a pervasive learning system in the same sense as Soar. These mech

are based on a “rational analysis” (Anderson, 1990) of the information needs of an adaptive

cognitive system.

For example, consider conflict resolution. Each production in ACT-R has associated

it several numeric parameters, including numbers which represent the probability that if the

production fires, the goal will be reached and the cost, in time, that will be incurred if the

production fires. These values are combined according to a formula that trades off probabilit

success vs. cost and produces an “expected gain” for each production. The matching produc
Byrne HoHCI chapter page 37

 The

bability

me.

vel”

 the

of use,

tivation

ese

ith

m a

d in

ut does

de an

nd

s a

trictive
with the highest expected gain is the one that gets to fire when conflict resolution is invoked.

expected gain values are noisy, so the system’s behavior is somewhat stochastic, and the pro

and cost values are learned over time so that ACT-R can adapt to changing environments.

Similarly, the activation of elements in declarative memory is based on a Bayesian

analysis of the probability that a declarative memory element will be needed at a particular ti

This is a function of the general utility of that element, reflected in what is termed its “base-le

activation, and that element’s association with the current context. The more frequently and

recently an element has been accessed, the higher its base-level activation will be, and thus

easier it is to retrieve. This value changes over time according to the frequency and recency

thus this value is learned. Associations between elements may also be learned, so that the ac

an element receives based on its association with the current context can change as well. Th

mechanisms have helped enable ACT-R to successfully model a wide range of cognitive

phenomena.

In ACT-R/PM, the basic ACT-R production system is augmented with four EPIC-like

peripheral modules, as depicted in Figure 3. Like EPIC, all of these modules run in parallel w

one another, giving ACT-R the ability to overlap processing. The peripheral modules come fro

variety of sources. ACT-R/PM’s Vision Module is based on the ACT-R Visual Interface describe

Anderson, Matessa, and Lebiere (1997). This is a feature-based attentional visual system, b

not explicitly model eye movements. Recently, the Vision Module has been extended to inclu

eye-movement model (Salvucci, 2001a) as well. The Motor Module is nearly identical to the

Manual Motor Processor in EPIC and is based directly on the specification found in Kieras a

Meyer (1996), and the Speech Module is similarly derived from EPIC. The Audition module i

hybrid of the auditory system found in EPIC and the attentional system in ACT-R/PM’s Vision

Module.

---------- insert Figure 3 about here ----------

One other important property of ACT-R/PM is that it is possible to have ACT-R/PM

interact with the same software as the human users being modeled. There are some fairly res
Byrne HoHCI chapter page 38

 the

s of

eling

More

al to

l-task

d

ere,

e have

ngs,

ent,

. The

d the

e

 In the

).

l and

over

g

t

an
conditions on how the software must be developed, but if these conditions are met then both

user and the model are forced to use the same software. This reduces the number of degree

freedom available to the modeler in that it becomes impossible to force any unpleasant mod

details into the model of the user interface, because there is no model of the user interface.

will be said about this issue in the next section.

As described in the section on EPIC, multiple-tasking is becoming increasingly critic

HCI endeavors. Thus, one of the first major modeling efforts with ACT-R/PM has been to dua

phenomena, in fact the same kinds of simple PRP dual-tasks to which EPIC has been applie

(Byrne & Anderson, in press). However, as the most recent architecture of those described h

ACT-R/PM has not yet been as widely applied to HCI tasks as have the others. However, ther

been some recent models that are more directly HCI endeavors than the PRP work.

The first example comes from the dissertation work of Ehret (1999). Among other thi

Ehret developed an ACT-R/PM model of a fairly simple, but subtle, experiment. In that experim

subjects were shown a target color, and asked to click on a button that would yield that color

buttons themselves had four types: blank, arbitrary icon, text label, and color. In the color

condition, the task was simple: users just found the color that matched the target, then clicke

button. In the text label condition, the task was only slightly more difficult: users could read th

labels on the buttons, and select the correct one because the description matched the color.

arbitrary icon condition, more or less random pictures appeared on each icon (e.g. a mailbox

Users had to either memorize the picture to color mapping, which they had to discover by tria

error, or memorize the location of each color, since the buttons did not change their function

time. In the hardest condition, the blank condition, users simply had to memorize the mappin

between button location and color, which they had to discover through trial and error.

Clearly, the conditions will produce different average response times, and what Ehre

found is that they also produced somewhat different learning curves over time. Ehret added

additional manipulation as well: after performing the task for some time, all the labeling was

removed. Not surprisingly, the amount of disruption was different in the different conditions,
Byrne HoHCI chapter page 39

ask.

is

d the

. The

urves.

abels

ng

’s

dle

ually

bile

n the

del

ich

d

 The

aster

ng.

one

here

ers or
reflecting the amount of incidental location learning that went on as subjects performed the t

The ACT-R/PM model that Ehret constructed did an excellent job of explaining the results. Th

model represented the screen with the built-in visual mechanisms from ACT-R/PM and learne

mappings between color and location via ACT-R’s standard associative learning mechanisms

initial difference between the various conditions was reproduced, as were the four learning c

The model also suffered disruptions similar to those suffered by the human users when the l

were removed. This model is an excellent demonstration of the power of ACT-R/PM, exercisi

both the perceptual-motor capabilities of the system as well as the graded learning in ACT-R

rational-analysis driven mechanisms.

Salvucci (2001b) describes an ACT-R/PM model that tests ACT-R/PM’s ability to han

multimodal, high-performance situations in a very compelling task: this model drives an

automobile driving simulator. This is not a robotics project; the ACT-R/PM model does not act

turn the steering wheel or manipulate the pedals, but rather it communicates with the automo

simulation software. The model’s primary job is to maintain lane position as the car drives dow

road. Salvucci (2001b) adds an additional task which makes it particularly interesting: the mo

dials telephone numbers on a variety of mobile phone interfaces. There were two factors, wh

were crossed: whether the telephone was dialed manually via keypad vs. dialed by voice, an

whether the full telephone number needed to be dialed vs. a shortened “speed dial” system.

model was also validated by comparison with data from human users.

What both the model and the human users showed is that dialing while not driving is f

than dialing while driving, and that steering performance can be disrupted by telephone diali

Not surprisingly, the most disruptive interface was the “full-manual” interface, where the full ph

numbers were dialed on a keypad. This is due largely to the fact that dialing with the keypad

requires visual guidance, causing the model (and the users) to take their eyes off the road. T

was very little disruption associated with the voice interfaces, regardless of whether full numb

speed-dial was used.
Byrne HoHCI chapter page 40

ns.

d, this

an

erally

al of

rface, it

 to

.

eview.

rly a

 often

acted

d the

, Soar,

y

 they

 a good
This is a nice illustration of the value of cognitive architectures for a number of reaso

First, the basic driving model could simply be re-used for this task; it did not have to be re-

implemented. Second, the model provides an excellent quantitative fit to the human data. Thir

is an excellent example of a situation where testing human users can be difficult. Testing hum

drivers with interfaces that degrade driving performance is dangerous, so simulators are gen

used for this kind of evaluation. However, maintaining a driving simulator requires a great de

space and is quite expensive. If someone wanted to test another variant of the telephone inte

would be much faster and cheaper to give that interface to Salvucci’s model than it would be

recruit and test human drivers.

There is other published and ongoing work applying ACT-R/PM to HCI problems (e.g

Byrne, 2001; Schoelles & Gray, 2000), but space considerations prohibit a more exhaustive r

The vitality of the research effort suggests that ACT-R/PM’s combination of perceptual-motor

modules and a strong theory of cognition will pay dividends as an HCI research tool.

In fact, this is not limited to ACT-R/PM; overall, cognitive architectures are an exciting

and active area of HCI research. The four systems described here all take slightly different

approaches and focus on slightly different aspects of various HCI problems, but there is clea

great deal of cross-pollination. Lessons learned and advancements made in one architecture

affect other systems, for example, the development of EPIC’s peripheral systems clearly imp

both Soar and ACT-R.

3.5 Comparisons

An exhaustive and detailed comparison of the major cognitive architectures is beyon

scope of this chapter, however, an excellent comparison which includes a number of other

architectures can be found in Pew and Mavor (1998). Certainly, the three production systems

EPIC, and ACT-R/PM are related.A major difference between them is their original focus; the

were originally developed to model slightly different aspects of human cognition. However, as

develop, there appears to be more convergence than divergence. This is generally taken to be
Byrne HoHCI chapter page 41

uction

t is in

f Soar

 on

ning

een

s,

vision

s like

omenon

ly,

ar’s

rning

 which

ACT-

ced,

ns for

d to see
sign that the science is cumulating.Still, there are differences, and certainly between the prod

systems and LICAI/CoLiDeS. Many of the relevant comparisons are summarized in Table 1.

---------- insert Table 1 about here ----------

This table does not include the hybrid EPIC-Soar system because it is not clear wha

store for that system; however, this system would essentially contain most of the attributes o

but would get a “yes” on the “detailed perceptual-motor systems” feature. Most of the entries

this table have been discussed previously with the exception of the last two. Support for lear

will be discussed in the next section. The presence and size of the user community has not b

discussed, as it is not clear what role (if any) such a community plays in the veridicality of the

predictions made by the system. However, it may be relevant to researchers for other reason

particularly those trying to learn the system.

In addition, many of the values on this table are likely to change in the future. For

example, a more pervasive learning mechanism for ACT-R is slated to be a part of the next re

of the theory. Whether this will result in ACT-R being as successful as Soar in modeling thing

exploratory learning is not yet clear.

It is difficult to classify the value an architecture has on a particular attribute as an

advantage or a disadvantage, because what constitutes an advantage for modeling one phen

may be a disadvantage for modeling others. For example, consider learning in Soar. Certain

when attempting to model the improvement of users over time with a particular interface, So

learning mechanism is critical. However, there are many applications for which modeling lea

is not critical and Soar’s pervasive learning feature occasionally causes undesired side effects

can make model construction more difficult.

4. The Future of Cognitive Architectures in HCI

Beyond the incremental development and application of architectures like Soar and

R/PM, what will the future hold for cognitive architectures in HCI? What are the challenges fa

and what is the ultimate promise? Currently, there are indeed a number of important limitatio

cognitive architectures. There are questions they cannot yet address, and questions it is har
Byrne HoHCI chapter page 42

se are

rrent

but

n.

 have

nline

le to

en

 are,

re still

ss

 (the

if an

able

he

k has

kaged

997,

s Web
how they even would address. Other limitations are more pragmatic than in principle, but the

relevant as well.

First, there are a wide array of HCI problems that are simply outside the scope of cu

cognitive architectures. Right now, these architectures focus on cognition and performance,

there are other aspects of HCI, such as user preference, boredom, aesthetics, fun, and so o

Another important challenge, though one that might be overcome, is that these architectures

generally not been applied to social situations, such as those encountered in groupware or o

communities (Olson & Olson, this volume; Preece, this volume). It is not in principle impossib

implement a model of social interaction in a cognitive architecture; however, the knowledge

engineering problem here would certainly be a difficult one. How does one characterize and

implement knowledge about social situations with enough precision to be implemented in a

production system? It may ultimately be possible to do so, but it is unlikely that this will happ

anytime soon.

One problem that will never entirely be resolved, no matter how diligent the modelers

is the knowledge engineering problem. Every model constructed using a cognitive architectu

needs knowledge about how to user the interface and what the tasks are. By integrating acro

models, the knowledge engineering demands when entering a new domain may be reduced

NTD is a nice example), but they will never be eliminated. This requirement will persist even

architecture were to contain a perfect a theory of human learning—and there is still consider

work to be done to meet that goal.

Another barrier to the more widespread use of cognitive architectures in HCI is that t

architectures themselves are large and complex pieces of software, and (ironically) little wor

been done to make them usable or approachable for novices. For example: “EPIC is not pac

in a ‘user-friendly’ manner; full-fledged Lisp programming expertise is required to use the

simulation package, and there is no introductory tutorial or user’s manual.” (Kieras & Meyer, 1

p. 399). The situation is slightly better for Soar, which does have a frequently-asked question

resource (http://ritter.ist.psu.edu/soar-faq/) and some tutorial materials (http://
Byrne HoHCI chapter page 43

 a

s for

ed in

ewhat

face.

ing a

) or

the

this

faces

cate

grees

vide

e

er

eract

 on

I is a

nitive
www.psychology.nottingham.ac.uk/staff/Frank.Ritter/pst/pst-tutorial.html). However, Soar has

reputation as being difficult to learn and use. Tutorial materials, documentation, and example

ACT-R are available, and most years there is a two-week “summer school” for those interest

learning ACT-R (see http://act.psy.cmu.edu/). However, the resources for ACT-R/PM are som

more limited, though there are some rudimentary examples and documentation (see http://

chil.rice.edu/byrne/RPM/).

Another limiting factor is implementation. In order for a cognitive architecture to

accurately model interaction with an interface, it must be able to communicate with that inter

Because most user interfaces are “closed” pieces software with no built-in support for supply

cognitive model with the information it needs for perception (i.e., what is on the screen where

accepting input from a model, this creates a technical problem. Somehow, the interface and

model must be connected. A excellent summary of this problem can be found in Ritter, et al.

(2000). A number of different approaches have been taken. In general, the EPIC solution to

problem has been to re-implement the interface to be modeled in Lisp, so the model and the

interface can communicate via direction function calls. The ACT-R/PM solution is not entirely

dissimilar. In general, ACT-R/PM has only been applied to relatively new experiments or inter

which were initially implemented in Lisp, and thus ACT-R/PM and the interface can communi

via function calls. In order to facilitate the construction of models and reduce the modeler’s de

of freedom in implementing a custom interface strictly for use by a model, ACT-R/PM does pro

some abilities to automatically manage this communication when the interface is built with th

native GUI builder for Macintosh Common Lisp under MacOS and Allegro Common Lisp und

Windows. If the interface is implemented this way, both human users and the models can int

with the same interface.

Despite these limitations, this is a particularly exciting time to be involved in research

cognitive architectures in HCI. There is a good synergy between the two areas, as cognitive

architectures are certainly useful to HCI, so HCI is also useful for cognitive architectures. HC

complex and rich yet still tractable domain, which makes it an ideal candidate for testing cog
Byrne HoHCI chapter page 44

al

rst

s a

e

and

l

d and

s not

tional

nt

creen

ap

ilities

uld in

le the

, this

this

 degree

y, &

n on

r &
architectures. HCI tasks are more realistic and require more integrated capabilities than typic

cognitive psychology laboratory experiments, and thus cognitive architectures are the best

theoretical tools available from psychology. Theories like EPIC-Soar and ACT-R/PM are the fi

complete psychological models that go from perception to cognition to action in detail. This i

significant advance and holds a great deal of promise.

Even some of the limitations have generated solid research in an attempt to overcom

them. For example, Ritter, et al. (2000) describes the implementation of a generic “sim-eye”

“sim-hand” as part of a more general program researching of what they term “cognitive mode

interface management systems” (CMIMS). For instance, they have implemented a virtual han

eye in Tcl/Tk which can interact with either Soar or ACT-R via a socket-based interface. This i

a trivial technical accomplishment, and may serve to help make it easier to develop computa

cognitive models which interact with software systems.

The most intriguing development along this line, however, is recent work by St. Ama

and Riedl (2001). They have implemented a system called VisMap which directly parses the s

bitmap on Windows systems. That is, given a Windows display—any Windows display—VisM

can parse it and identify things like text, scroll bars, GUI widgets, and the like. It also has fac

for simulating mouse and keyboard events. This is an intriguing development, because it sho

principle be possible to connect this to an architecture like EPIC or ACT-R, which would enab

architecture to potentially work with any Windows application in its native form.

While there are still a number of technical details which would have to be worked out

has the potential of fulfilling one of the visions held by many in the cognitive architecture

community: a high-fidelity “virtual user” that could potentially use any application or even

combination of applications. Besides providing a wide array of new domains to researchers,

could be of real interest to practitioners as well because this opens the door for at least some

of automated usability testing. This idea is not a new one (e.g. Byrne, Wood, Sukaviriya, Fole

Kieras, 1994; St. Amant, 2000), but technical and scientific issues have precluded its adoptio

even a limited scale. This would not eliminate the need for human usability testing (see Ritte
Byrne HoHCI chapter page 45

could

and

his

s HCI

in

d-

f

ich

odels.

ey are

itive
Young, 2001, for a clear discussion of this point) for some of the reasons listed above, but it

significantly change usability engineering practice in the long run.

The architectures themselves will continue to be updated and applied to more tasks

interfaces. There is a new version (version 5.0) of ACT-R currently under development, and t

new version has definitely been influenced by issues raised by the PM system and numerou

concerns. New applications of EPIC result in new mechanisms (e.g., similarity-based decay

verbal working memory storage, Kieras, et al., 1999) and new movement styles (e.g. click-an

point, Hornof & Kieras, 1999). Applications like the world-wide web are likely to drive these

models into more semantically rich domain areas, and tasks which involve greater amounts o

problem-solving are also likely candidates for future modeling.

The need for truly quantitative engineering models will only grow as user interfaces

propagate into more and more places and more and more tasks. Cognitive architectures, wh

already have a firmly-established niche in HCI, seem the most promising road toward such m

Thus, as the architectures expand their range of application and their fidelity to the humans th

attempting to model, this niche is likely to expand. HCI is an excellent domain for testing cogn

architectures as well, so this has been, and will continue to be, a fruitful two-way street.
Byrne HoHCI chapter page 46

sis.

t

 in

 text-

 to

.

l

References

Altmann, E. M. (2001). Near-term memory in programming: A simulation-based analy

International Journal of Human-Computer Studies, 54(2), 189-210.

Altmann, E. M., & John, B. E. (1999). Episodic indexing: A model of memory for

attention events. Cognitive Science, 23(2), 117-156.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP

tutor. Cognitive Science, 13(4), 467-505.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:

Erlbaum.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level

cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439-462.

Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992). Evaluating two aspects of direc

manipulation in advanced cockpits. Proceedings of ACM CHI 92 Conference on Human Factors

Computing Systems (pp. 127-134). New York: ACM.

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance of

editing skill: A cognitive complexity analysis. Human-Computer Interaction, 5(1), 1-48.

Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture

HCI. International Journal of Human-Computer Studies, 55, 41-84.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C

Lebiere (Eds.), The atomic components of thought (pp. 167-200). Hillsdale, NJ: Erlbaum.

Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa, M. (1999). Eye tracking the

visual search of click-down menus. ACM CHI'99 Conference on Human Factors in Computing

Systems (pp. 402-409). New York: ACM.

Byrne, M. D., & Bovair, S. (1997). A working memory model of a common procedura

error. Cognitive Science, 21(1), 31-61.
Byrne HoHCI chapter page 47

e

ax,

MS

l

ing

n

ask-

Byrne, M. D., Wood, S. D., Sukaviriya, P. N., Foley, J. D., & Kieras, D. E. (1994).

Automating interface evaluation. ACM CHI'94 Conference on Human Factors in Computing

Systems (pp. 232-237). New York: ACM Press.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer

interaction. Hillsdale, NJ: Erlbaum.

Chong, R. S., & Laird, J. E. (1997). Identifying dual-task executive process knowledg

using EPIC-Soar. In M. Shafto & P. Langley (Eds.), Proceedings of the Nineteenth Annual

Conference of the Cognitive Science Society (pp. 107-112). Hillsdale, NJ: Erlbaum.

Ehret, B. D. (1999). Learning where to look: The acquisition of location knowledge in

display-based interaction. Unpublished doctoral dissertation, George Mason University, Fairf

VA.

Franzke, M. (1994). Exploration, acquisition, and retention of skill with display-based

systems. Unpublished doctoral dissertation, University of Colorado, Boulder.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a GO

analysis for predicting and explaining real-world task performance. Human-Computer Interaction,

8(3), 237-309.

Gray, W. D., Young, R. M., & Kirschenbaum, S. S. (1997). Introduction to this specia

issue on cognitive architectures and human-computer interaction. Human-Computer Interaction,

12, 301-309.

Hornof, A., & Kieras, D. E. (1997). Cognitive modeling reveals menu search is both

random and systematic. Proceedings of ACM CHI 97 Conference on Human Factors in Comput

Systems (pp. 107-114). New York: ACM.

Hornof, A., & Kieras, D. (1999). Cognitive modeling demonstrates how people use

anticipated location knowledge of menu items. Proceedings of ACM CHI 99 Conference on Huma

Factors in Computing Systems (pp. 410-417). New York: ACM.

Howes, A., & Young, R. M. (1996). Learning consistent, interactive, and meaningful t

action mappings: A computational model. Cognitive Science, 20(3), 301-356.
Byrne HoHCI chapter page 48

ing

,

).

l

ion-

ion

tion

and

Howes, A., & Young, R. M. (1997). The role of cognitive architecture in modeling the

user: Soar's learning mechanism. Human-Computer Interaction, 12(4), 311-343.

Huguenard, B. R., Lerch, F. J., Junker, B. W., Patz, R. J., & Kass, R. E. (1997). Work

memory failure in phone-based interaction. ACM Transactions on Computer-Human Interaction, 4

67-102.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis

techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3, 320-

351.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999

Automated intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27-41.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individua

differences in working memory. Psychological Review, 99(1), 122-149.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text: A product

system analysis of transfer of training. Journal of Memory & Language, 25(5), 507-524.

Kieras, D. E., & Meyer, D. E. (1996). The EPIC architecture: Principles of operation.

Available: ftp://ftp.eecs.umich.edu/people/kieras/EPICarch.ps.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognit

and performance with application to human-computer interaction. Human-Computer Interaction,

12(4), 391-438.

Kieras, D. E., & Meyer, D. E. (2000). The role of cognitive task analysis in the applica

of predictive models of human performance. In J. M. Schraagen & S. F. Chipman (Eds.), Cognitive

task analysis (pp. 237-260). Mahwah, NJ: Erlbaum.

Kieras, D. E., Meyer, D. E., Mueller, S., & Seymour, T. (1999). Insights into working

memory from the perspective of the EPIC architecture for modeling skilled perceptual-motor

cognitive human performance. In A. Miyake & P. Shah (Eds.), Models of working memory:

Mechanisms of active maintenance and executive control (pp. 183-223). New York: Cambridge

University Press.
Byrne HoHCI chapter page 49

xity.

sed

l of

),

ion.
Kieras, D. E., Meyer, D. E., & Ballas, J. A. (2001). Towards demystification of direct

manipulation: cognitive modeling charts the gulf of execution, Proceedings of ACM CHI 01

Conference on Human Factors in Computing Systems (pp. 128-135). New York: ACM.

Kieras, D., & Polson, P. G. (1985). An approach to the formal analysis of user comple

International Journal of Man-Machine Studies, 22(4), 365-394.

Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models ba

on the EPIC architecture for multimodal high-performance human-computer interaction task.

Transactions on Computer-Human Interaction, 4(3), 230-275.

Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York: Cambridge

University Press.

Kitajima, M., & Polson, P. G. (1997). A comprehension-based model of exploration.

Human-Computer Interaction, 12(4), 345-389.

Kitajima, M., Blackmon, M. H., & Polson, P. G. (2000). A comprehension-based mode

web navigation and its application to web usability analysis. In S. McDonald & Y. Waern & G.

Cockton (Eds.), People and Computers XIV - Usability or Else! (Proceedings of HCI 2000) (pp.

357-373). New York: Springer.

Lallement, Y., & John, B. E. (1998). Cognitive architecture and modeling idiom: An

examination of three models of the Wickens's task. In M. A. Gernsbacher & S. J. Derry (Eds.

Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 597-602).

Hillsdale, NJ: Erlbaum.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent

semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological

Review, 104(2), 211-240.

Lewis, R. L. (1993). An architecturally-based theory of human sentence comprehens

Unpublished doctoral dissertation, University of Michigan, Ann Arbor.
Byrne HoHCI chapter page 50

he

ents

 E.

:

A

eory

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive

processes and multiple-task performance: I. Basic mechanisms. Psychological Review, 104(1), 3-

65.

Nelson, G., Lehman, J. F., & John, B. E. (1994). Integrating cognitive capabilities in a

real-time task. In A. Ram & K. Eiselt (Eds.), Proceedings of the Sixteenth Annual Conference of t

Cognitive Science Society (pp. 353-358). Hillsdale, NJ: Erlbaum.

Newell, A. (1973). You can't play 20 questions with nature and win: Projective comm

on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing. New York:

Academic Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University

Press.

Newell, A., & Simon, H. A. (1963). GPS, a program that simulates human thought. In

A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). Cambridge, MA: MIT

Press.

Pew, R. W., & Mavor, A. S. (Eds.). (1998). Modeling human and organizational behavior

Application to military simulations. Washington, DC: National Academy Press.

Pirolli, P., & Card, S. (1999). Information foraging. Psychological Review, 106(4), 643-

675.

Polk, T. A., & Newell, A. (1995). Deduction as verbal reasoning. Psychological Review,

102(3), 533-566.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs:

method for theory-based evaluation of user interfaces. International Journal of Man-Machine

Studies, 36(5), 741-773.

Polson, P. G., Muncher, E., & Engelbeck, G. (1986). A test of a common elements th

of transfer. Proceedings of ACM CHI'86 Conference on Human Factors in Computing Systems (pp.

78-83). New York: ACM.
Byrne HoHCI chapter page 51

ers.

n to

.

gies

Rieman, J., Young, R. M., & Howes, A. (1996). A dual-space model of iteratively

deepening exploratory learning. International Journal of Human-Computer Studies, 44(6), 743-

775.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Cognitive models as us

ACM Transactions on Computer-Human Interaction, 7, 141-173.

Ritter, F. E., & Young, R. M. (2001). Embodied models as simulated users: Introductio

this special issue on using cognitive models to improve interface design. International Journal of

Human-Computer Studies, 55, 1-14.

Salthouse, T. A. (1988). Initiating the formalization of theories of cognitive aging.

Psychology & Aging, 3(1), 3-16.

Salvucci, D. D. (2001a). An integrated model of eye movements and visual encoding

Cognitive Systems Research, 1(4), 201-220.

Salvucci, D. D. (2001b). Predicting the effects of in-car interface use on driver

performance: An integrated model approach. International Journal of Human-Computer Studies,

55, 85-107.

Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrate

in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the

Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal

Press.

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA:

Harvard University Press.

St. Amant, R. (2000, Summer). Interface agents as surrogate users. Intelligence magazine,

11(2), 29-38.

St. Amant, R., & Riedl, M. O. (2001). A perception/action substrate for cognitive

modeling in HCI. International Journal of Human-Computer Studies, 55, 15-39.
Byrne HoHCI chapter page 52

hed

ite

Tullis, T. S. (1983). The formatting of alphanumeric displays: A review and analysis.

Human Factors, 25(6), 657-682.

Wiesmeyer, M. (1992). An operator-based model of covert visual attention. Unpublis

doctoral dissertation, University of Michigan, Ann Arbor.

Young, R. M., Barnard, P., Simon, T., & Whittington, J. (1989). How would your favor

user model cope with these scenarios? ACM SIGCHI Bulletin, 20, 51-55.
Byrne HoHCI chapter page 53

* Outside of the researchers who have developed the system.

Table 1: Architecture feature comparison.

LICAI/
CoLiDeS

Soar EPIC ACT-R/PM

Original focus text
comprehension

learning and
problem-solving

multiple-task
performance

memory and
problem-solving

Basic cycle construction-
integration

decision cycle production cycle
(parallel)

production cycle
(serial)

Symbolic or
activation-
based?

both symbolic symbolic both

Architectural
goal
management

special cycle
types, supports

vague goals

universal
subgoaling

none goal stack

Detailed
perceptual-
motor systems

no no yes yes

Learning
mechanisms

no yes, pervasive no yes, but not
pervasive

Large,
integrated
models

no yes no no

Extensive
natural language

yes yes no no

Support for
learning system

none FAQ, some
tutorial

materials

none extensive
tutorial

materials,
summer school

User
community*

none some, primarily
AI

none growing,
primarily

psychology
Byrne HoHCI chapter page 54

Figure 1. Model Human Processor. Based on Card, Moran, and Newell (1983).

δ
µ
κ

κ

Cognitive
Processor

Perceptual
Processor

Motor
Processor

δ

µ
κ

= ∞

= semantic

= ∞
LTM

LTM

LTM

δAIS
µAIS

AIS

= 1500 [900~3500] msec

= 5 [4.4~6.2] letters

= Physical

VIS

VIS

VIS

= 200 [70~1000] msec

= 17 [7~17] letters
= Physical

= 3 [2.5~4.1] chunks

= 7 [5~9] chunks

= 7 [5~226] sec

= 73 [73~226] sec

= 7 [5~34] se

= Acoustic or Visual

WM

WM

µ
µWM*

δWM

δWM (1 chunk)

δWM (3 chunks)

κ

Eye movement = 230 [70~700] msec

= 100 [50~200]
msec P

τ

τ

τ

= 70 [25~170]
msec

C

= 70 [30~100]
msec

M

VISUAL IMAGE
STORE

AUDITORY IMAGE
STORE

WORKING MEMORY

LONG-TERM MEMORY
Byrne HoHCI chapter page 55

.
Figure 2. Overall structure of the EPIC architecture. Based on Kieras and Meyer (1996)

Task
Environment

Cognitive
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Auditory
Processor

Visual
Processor

Production
Memory

Ocular
Motor

Processor

Tactile
Processor

Manual
Motor

Processor

Simulated
Interaction

Devices
Byrne HoHCI chapter page 56

98).
Figure 3. Overall structure of the ACT-R/PM architecture. Based on Byrne and Anderson (19

Perceptual-
Motor Layer

Cognitive
Layer

attention

attention

target of
attention
(chunks)

target of
attention
 (chunks)

screen objects

simulated
audio

clicks,
keypresses

simulated
speech

Motor
Module

Speech
Module

Audition
Module

Vision
Module

Production
Memory

Declarative
Memory

Environment
Byrne HoHCI chapter page 57

	1. Introduction
	1.1 What Are Cognitive Architectures?
	1.2 Relevance to Human-computer Interaction

	2. Brief Look at Past Systems in HCI
	2.1 The Model Human Processor (MHP) and GOMS
	2.2 Cognitive Complexity Theory (CCT)
	2.3 CAPS

	3. Contemporary Architectures
	3.1 LICAI/CoLiDeS
	3.2 Soar
	3.3 EPIC
	3.4 ACT-R/PM
	3.5 Comparisons

	4. The Future of Cognitive Architectures in HCI
	References
	Table 1: Architecture feature comparison.

