
ABSTRACT
One method for user interface analysis that has proven
successful is formal interface analysis, such as GOMS-
based analysis. Such methods are often criticized for being
difficult to learn, or at the very least an additional burden
for the system designer. However, if the process of
constructing and using formal models could be automated
as part of the interface design environment, such models
could be of even greater value. This paper describes an
early version of such a system, called USAGE (the UIDE
System for semi-Automated GOMS Evaluation). Given the
application model necessary to drive the UIDE system,
USAGE generates an NGOMSL model of the interface
which can be “run” on a typical set of user tasks and
provide execution and learning time estimates.

KEYWORDS: GOMS, Usability, User Interface Design
Environment, Interface Evaluation, Formal Models of the
User, UIMS

INTRODUCTION
Often, it appears as if the field of HCI is divided into two
camps, the technologists and the psychologists. Despite
efforts at interdisciplinary partnership, most real interfaces
are fundamentally technology-driven. One reason for this,
perhaps, is that simply developing working code is difficult
enough without having to worry about the most recent
findings in the psychology of human-computer interaction.
One possible avenue to pursue in solution to this problem
would be to bring psychological models into the

developer’s technical arsenal. That is, build formal
cognitive analysis techniques into the application
development environment.

This paper describes a first attempt to do just that with a
system called USAGE, which is short for the UIDE System
for semi-Automated GOMS Evaluation. USAGE is built
out of a number of components, each of which will be
described. An example of how USAGE might be utilized
will be presented, as well as a discussion of current
problems and possible future directions.

UIDE
UIDE (the User Interface Design Environment) is a model-
based interface design tool which was developed in C++
and currently runs under SunOS. It is described in more
detail in [6]. The aspects of UIDE that are most directly
relevant are the model-based nature of the system and the
planning engine.

In UIDE, an application is constructed by specifying a
model of the interface and then “plugging in” the
application-specific code. The interface model consists of a
number of pieces, most importantly application actions,
interface actions, and interaction techniques. Application
actions are user actions at the user task-relevant level, such
as “create a gate” in a digital circuit design application.
Application actions are performed by executing one or
more interface actions, which consist of interface-level
constructs, such as “select a command from a pull-down
menu.” Interface actions are, in turn, composed of
interaction techniques, which specify the actual physical
actions, such as “click-left-mouse-button.”

While UIDE requires that each application action be linked

Automating Interface Evaluation

Michael D. Byrne1, Scott D. Wood2, Piyawadee “Noi” Sukaviriya1, 

James D. Foley1, David E. Kieras2

1Graphics, Visualization, and Usability Center
Georgia Institute of Technology

Atlanta, GA 30332
E-mail: {byrne, noi, foley}@cc.gatech.edu

2Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, MI 48109

E-mail: {swood, kieras}@engin.umich.edu



to one or more interface actions at the level below it, no
particular order is specified by this linkage. However, UIDE
also contains a simple planning algorithm that can
determine the “correct” sequence of interface actions to be
performed to execute an application action.

As part of USAGE, UIDE can generate an ASCII
description of an application in terms of the hierarchical
decomposition of each application action; that is, a listing
of all the interface actions and interaction techniques in
sequence as necessary to perform each application action.
An excerpt from such a file appears in Figure 1.

GOMS
GOMS (goals, operators, methods, and selection rules) was
introduced in the early 1980s as a technique for interface
analysis by Card et al. [2]. The validity of this technique as
a method for quantifying the procedural knowledge
necessary to operate and interface has been greatly
reinforced by Kieras and colleagues [1,5]. 

Kieras [3] presents a formalism for performing GOMS
analysis called NGOMSL (Natural GOMS Language). This
language is simple to learn and use for the purposes of
interface analysis, and in many ways resembles a
programming language. Figure 2 presents a common
method as it would be represented in NGOMSL. NGOMSL
models may be used to estimate learning time for an
interface, as well as execution time for tasks using the
interface [3]. While it is not difficult to learn how to
construct models in NGOMSL, constructing such models
and then using them to predict execution times can be a
tedious and time-consuming process.

One of those problems has recently been addressed,
however. Recently, we have constructed an NGOMSL
“interpreter” [7]. This interpreter takes as input an
NGOMSL model of an interface and a description of the
tasks to be performed in that interface and produces an
estimate of the time it will take to perform the tasks. This
makes evaluation of alternative interfaces simple and rapid
if NGOMSL models are available for the alternative
interfaces. Construction of such models, however, is not
aided by the NGOMSL interpreter and is still left entirely to
the analyst.

THE USAGE TRANSLATOR
The last essential piece of USAGE is the translator. The
basic function of the translator is simple: it translates the
action sequence file generated by UIDE into an NGOMSL
model. The NGOMSL model, along with a description of
the tasks to be performed, is then fed into the NGOMSL
interpreter. The role of the translator is clearer when viewed
in the context of the flow of USAGE, which is depicted in
Figure 3, with file icons representing ASCII files and ovals
programs.

The translator works by reading from the UIDE-generated
application description one application action at a time. For
each application action, a new NGOMSL method is
generated. The steps in the method are the interface actions
necessary to complete the application action. Since the

APPLICATION: CircuitDesign

Application Action: CreateANDGate {location}
{gate}

1. SelectCommandIcon {CreateAND}
1) ClickObject_LeftButton

2. SelectPosition-DM {canvas} {pos:location}
1) ClickPosition_LeftButton

3. InvokeAction

Application Action: MoveGate {object}
{new_position}

1. DragObject-DM {graphical_obj}
{app_obj:object} {new_position:new_position}

1) DragToPos_LeftButton
2. InvokeAction

Application Action: DeleteGate {object}

1. SelectCommandFromPulldownMenu {Gate}
{Delete}

1) DragToObject_LeftButton
2. SelectObject-DM {graphical_obj}
{app_obj:object}

1) ClickObject_LeftButton
3. InvokeAction

Figure 1. Example of UIDE output

Method for goal: select <command> from <menu>
menu
Step 1 Recognize <menu>
Step 2 Move cursor to <menu>
Step 3 Press left mouse button
Step 4 Recognize <command>
Step 5 Move cursor to <command>
Step 6 Release left mouse button
Step 7 Return with goal accomplished

Figure 2. Example NGOMSL



planner in UIDE ensures the correct and complete action
sequences, this guarantees an accurate NGOMSL model.

The interface actions are processed by lookup. Within the
translator code, a library of “common” NGOMSL methods
are maintained. These include methods for simple actions
like clicking on objects, selecting from pull-down menus,
and dragging objects with the mouse. The name of the
application action and the interaction technique(s) linked to
it are used as the index for this library. For instance, the
“SelectCommandFromPullDownMenu” in Figure 1 would
cause the translator to include a step in the DeleteGate
method to accomplish the goal of selecting from a pull-
down menu, and would include the method in Figure 2 as
part of the NGOMSL model for the interface.

The USAGE translator makes it possible to quickly and
effortlessly generate an NGOMSL model of an interface
created in UIDE. The power of this tool should be apparent:
it makes possible rigorous formal modeling of the user
interface without creating additional work for the interface
designer. The logic for estimating learning time for the
interface has not yet been implemented in the interpreter,
but is roughly proportional to a simple count of the number
of NGOMSL statements in the model of the interface, and
execution time for a set of tasks can be directly estimated
by employing the NGOMSL interpreter.

Such a tool has a variety of applications, one of the most
obvious being rapid comparisons between interfaces. This
particular application of USAGE is important enough to
merit more extended treatment.

USAGE AT WORK: CIRCUITDESIGN

In the description of UIDE presented in [6], the digital
circuit application which was constructed using UIDE was
presented as an example, and it will be used again here.
CircuitDesign is a simple demonstration application in
which users can create and manipulate simple digital
circuits made up of logic gates. Figure 4 depicts the
CircuitDesign interface. The current instantiation of
CircuitDesign uses a combination of command icons (on
the left of the Figure 4) and pull-down menus, a fairly
typical GUI. 

However, the designer of CircuitDesign could have chosen
differently, even within the same interface paradigm; for
example, all of the commands could have been placed in the
pull-down menus. Conversely, all of the commands could
have been icon-based—on the surface, there does not seem
to be much of a difference between the two command
styles. Such decisions are often made casually, based on

UIDE
models

UIDE

Hierarchical
Action

Sequences

USAGE
translator

NGOMSL
method

file

NGOMSL
interpreter

user
tasks

Execution Time
Estimates

Learning Time
Estmates

Figure 3. USAGE flow



little more than the whim of the designer. The ramifications
of such decisions are not often addressed, since the time and
effort of doing so is typically presumed to outweigh any
minor gains.

With USAGE, however, the impact of such changes can be
assessed rapidly, easily, and cheaply. The process of
comparing the three interfaces (all icon, mixed, and all
menu) is a simple one. First, three different UIDE action
listing files need to be generated. This can be done by
constructing three separate UIDE instantiations and having
UIDE create a new file for each one or by creating one
UIDE instantiation and simply altering the action listing
file. Second, a set of representative tasks must be defined
and constructed for use by the NGOMSL interpreter. Next,
the action listing files must be translated to NGOMSL by
the USAGE translator. Finally, each NGOMSL model is
”run” by the interpreter and the estimate of execution time
recorded.

A word needs to be said about the task set used. In order for
any modeling, whether GOMS or not, to be truly
informative, a representative set of tasks must be used. It is
not reasonable to construct a model and then estimate
execution times for a non-representative set of tasks. If the
users of the interface will actually be spending 60% of their
tasks on creating new gates, for instance, it makes little

sense to use a set of tasks that contain an equal balance of
all the tasks possible in the interface. The simple
availability of features does not ensure that they will be
employed by real users. Thus, while the USAGE process is
intended to be as automated as possible, the only way to
ensure correct predictions is through the use of task files
that are actually representative. Real users, or at least real
usage statistics, are the only reliable source of such task
information.

For the example here, the task set includes three gate
creations, one gate move, and one gate deletion for a total
of five tasks. Using the procedure outlined previously, three
execution times were obtained, and these are presented in
Table 1. If the current mixture of icons and menus is taken
as the base for comparison, one can see that the choice of
command icons vs. menus does, in fact, make a difference
in the estimated execution time. While the absolute times
are not of particular interest, the relative times are. While
changing to an all-icon interface yields a speed increase of
7%, changing to a completely menu-based interface hurts

Figure 4. Interface to the CircuitDesign application with some gates in the design

Sec Ratio

All Icons 36.7 0.93
Mixed 39.3 1.00
All menus 47.1 1.20

Table 1. USAGE execution time estimates



performance considerably more: the decrement is
approximately 20%. Certainly, interface designers have
other considerations to contend with; e.g. there is only so
much screen space available for command icons. On the
other hand, USAGE can be an extremely useful aid when
making decisions about such tradeoffs.

A system such as USAGE, as a part of the larger UIDE
system, is a powerful aid and represents a real advance in
bringing formal modeling techniques to the interface
designer. As pointed out by Nielsen and Phillips [4],
GOMS models constructed by even moderately trained
analysts is a reasonably cost-effective analytical technique.
An automated GOMS system as part of UIDE provides all
the advantages of formal analysis at a substantially reduced
cost, as well as all the other advantages of UIDE (see [6]).

LIMITATIONS
While the advantages of USAGE are considerable, it is not
without its shortcomings. Currently, one of the major
limitations of USAGE is the translation process. As of this
writing, the translator is not able to handle application or
interface actions that have more than one way available for
the user to perform them, such as in the case of command-
key equivalents for menu-based commands. This is not a
major hurdle, though, and will require only relatively
simple additions to the code.

Another weakness of the system comes from the library of
NGOMSL methods that the translator must have available.
In the current implementation of the translator, the methods
are part of the source code and do not exist as a separate
database; again, this is a relatively straightforward problem
to resolve. More critically, the translator is only able to
translate those interface actions/interaction techniques for
which NGOMSL already exists. If a system designer is
forced to come up with a new kind of interaction technique,
they will also have to generate the NGOMSL to go along
with it. While this is not an incredibly arduous task, it does
require the interface designer be familiar with NGOMSL
syntax and discourages the generation of new styles of
interaction. But note that a particular interface paradigm,
e.g. Windows, corresponds to a library of basic interaction
methods; thus, the basic methods to support a paradigm
would only be implemented once.

Finally and most critically, USAGE does not address the
issue of higher-level goals or tasks. Currently, actions at the
level of “delete a gate” are the highest-level tasks that
USAGE can handle, as this is the highest-level description
present in UIDE. Users, however, are likely to formulate
goals at a much higher level, such as “create a flip-flop.”

This would have gate creation and connection as subgoals.
Such hierarchical goal decomposition, the hallmark of
much cognitive task analysis, is not available in USAGE,
because it is driven by the UIDE description.

FUTURE DIRECTIONS
The obvious next step for USAGE is to solve the simpler
technical problems just outlined, as well as to develop a
larger NGOMSL library to handle a wider variety of
interface actions/interaction techniques. Ideally, the
translator would be built directly into the UIDE system and
not a separate component.

Beyond that, though, there are other opportunities. One
possibility that is intriguing is that of going in the other
direction; that is, synthesizing an interface from an
NGOMSL model. This would be a much more difficult
process, since UIDE application models contain
considerably more information than NGOMSL models, and
are structured quite differently. However, reverse-
translation in one form or another is not an impossibility.
Because the NGOMSL form leads naturally to sound top-
down design, particularly in the higher-level goal structure
of the interface, such a tool has great appeal. The machinery
would also be in place to automatically alter the NGOMSL
models when technical concerns take the forefront and
force changes in the design. Such a fully-integrated two-
way system would be an invaluable asset in rapidly
designing interfaces that are easy to learn and efficient to
use. 

CONCLUSIONS
USAGE brings together a state-of-the-art model-based
interface design environment (UIDE) and a well-established
formal interface analysis technique (GOMS modeling).
Such a union allows for the automated generation of an
NGOMSL model for an interface specified in UIDE. This
system gives interface designers the ability to rapidly and
effortlessly evaluate design alternatives. While much more
work remains to be done, USAGE offers a tool previously
unavailable in user interface development.

ACKNOWLEDGEMENTS
The UIDE project is supported by the Siemens Corporate
R&D Systems Ergonomics and Interaction group of
Siemens Central Research Laboratory, Munich, Germany
and the Human Interface Technology Group of Sun
Microsystems through their Collaborative Research
Program. The first author is supported by a Graduate
Fellowship from the National Science Foundation. 



REFERENCES
1. Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The

acquisition and performance of text editing skill: A
cognitive complexity analysis. Human Computer
Interaction, 5, 1-48.

2. Card, S., Moran, T., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale,
NJ: Erlbaum.

3. Kieras, D. E. (1988). Towards a practical GOMS
model methodology for user interface design. In M.
Helander (Ed.), Handbook of human-computer
interaction (pp. 135-158). Amsterdam: North-Holland
Elesevier.

4. Nielsen, J., & Phillips, V. L. (1993). Estimating the
relative usability of two interfaces: Heuristic, formal,
and empirical methods compared. In Proceedings of
INTERCHI’93, 214-221.

5. Kieras, D. E., & Polson, P. G. (1985). An approach to
the formal analysis of user complexity. International
Journal of Man-Machine Studies, 22, 365-394.

6. Sukaviriya, N., Foley, J. D., & Griffith, T. (1993). A
second generation user interface design environment:
The model and the runtime architecture. In
Proceedings of INTERCHI’93, 375-382.

7. Wood, S. (1993). Issues in the Implementation of a
GOMS-model design tool. Unpublished report.


