
Abstract

Cognitive Science has typically proceeded with two
major forms of research: model-building and
experimentation. Traditional parametric statistics are
normally used in the analysis of experiments, yet the
assumptions required for parametric tests are almost
never met in Cognitive Science. The purpose of this
paper is twofold: to present a viable alternative to
traditional parametric statistics—the randomization
test—and to demonstrate that this method of statistical
testing is particularly suited to research in Cognitive
Science.

Introduction

One of the oldest methods of investigating the
phenomenology of human cognition is the experiment,
usually conducted in the laboratory. Experiments,
however, are only useful to the extent that they can
demonstrate reliable results.

The reliability of experimental results has, for some
time, been assessed through the use of inferential
statistics. While this is conceptually a sound process,
the actual methods usually employed to do this have
recently been subjected to increasing scrutiny and
suspicion. Traditional statistical techniques for the
analysis of experiments rely on parametric tests of
statistical reliability. These tests make assumptions
about the underlying form of the data and the method
used to collect the data. 

Probably the most common statistical method used
to analyze experiments is the analysis of variance, or
ANOVA. In the case of two-sample tests, a simpler
equivalent, the t-test, is normally employed. The

ANOVA F-test (taken as the typical parametric test)
makes a number of assumptions which are rarely met in
Cognitive Science research. Following is a list of the
assumptions and the nature of the violation typically
encountered.

Assumptions of Parametric Tests

Random Sampling

One of the most fundamental assumptions made in
parametric inferential statistics is that of random
sampling. The hypotheses in parametric tests concern
population parameters (usually means), where
estimators of those parameters are found by randomly
sampling from a population. In essence, a t-test tests a
hypothesis like µ1 = µ2. The terms µ1 and µ2 only have

meaning in the context of random sampling from some
population. Indeed, the mathematics underlying the t-
test is based on the estimation of a “standard error of the
mean,” which refers to the standard deviation of the
theoretical sampling distribution of the mean. If random
sampling is not employed, references to this distribution
make little sense.

In Cognitive Science, as in almost all experimental
research, random sampling is not only not done, but is
almost totally impractical. Experimenters do not
generate exhaustive lists of their populations and
generate random numbers to select people-samples of
subjects are almost always convenience samples, such
as “those subjects who sign up for the experiment.”
Random sampling is occasionally carried out by survey
researchers, but rarely by experimenters.

Normally Distributed Data

Parametric methods assume that the distribution from
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which the random sample is drawn has a distribution
that is, or closely approximates, the “normal” bell-
shaped, symmetric curve. The null probability
distributions to which parametric test statistics are
compared are mathematically derived from the normal
probability distribution. 

Fortunately, sampling from a population, even if
that population does not conform to the normal
distribution, yields normal distributions for the
parameter estimates as the number of subjects grows
larger. Thus, large random samples insure that even if
the underlying distribution in the population is not
normal, the sampling distributions of the parameters
will be. Unfortunately, most Cognitive Science
experiments fail to meet this criteria on several levels.

First, data in Cognitive Science are typically not
distributed normally. Reaction times and error rates, for
example, are almost always skewed distributions
because they by definition cannot have large left-hand
tails (negative scores are not possible, while there is no
upper bound on positive scores). Real data sets are also
prone to outliers, to which parametric tests are not
particularly robust.

This alone does not constitute a fundamental
problem if the sample size is large and is based on
random sampling. While samples of 200 or so are not
uncommon in some branches of behavioral research,
samples of as many as 50 are large for Cognitive
Science. 

Homogeneity of Variance

Parametric tests on means (such as the ANOVA)
assume equality among the variances of the groups
from which the samples being compared are drawn.
That is, if three groups are being compared, then the
variances around all three means must be equal in order
for the statistical test to be valid. In normal
distributions, the mean and the variance of a distribution
are independent, but this is not true in other
distributions. In most real data, for example, groups
with higher means tend to have higher variances as
well. Cognitive Science data is no exception.

I n r e p e a t e d - m e a s u r e s o r w i t h i n - s u b j e c t s
experiments, a stronger form of this assumption, called
sphericity, is required. While the details of the
sphericity assumption are complex, the basic concept is
that the repeated-measures ANOVA makes critical
assumptions about the nature of the data distribution.
Even relatively minor violations of sphericity can have
a serious impact on the validity of the ANOVA.
Unfortunately, it is often difficult to accurately
determine if the sphericity assumption is met (Hays,

1988), so any within-subjects experiment analyzed with
an ANOVA (which are not uncommon in Cognitive
Science) is a possible cause for concern.

Random Assignment

One other assumption that is almost universal in
experimental work is that of random assignment. That
is, experimental units, typically subjects, have equal
probability of being assigned to each level of the
independent variable(s). The classic example of random
assignment is in a two-group design wherein the
experimenter flips a coin for each subject to determine
the group into which that subject is placed.

Random assignment is not so much a statistical
assumption as it is a common and necessary practice to
insure the internal validity of an experiment (Campbell
& Stanley, 1963). That is, random assignment is
generally necessary in order to help insure that any
differences that are observed can be attributed to the
experimental manipulation and not to subject
differences. Meeting this assumption is not difficult,
and is the norm in laboratory work, including that in
Cognitive Science.  

Since it is nearly impossible to guarantee that
experiments in Cognitive Science will meet any of the
assumptions normally associated with statistical testing
and experimentation save for random assignment, what
is clearly necessary is a method for performing
statistical tests that makes no assumptions about the
data other than random assignment. Fortunately, such a
method exists, though it is only recently that it has
become practical. This method is called the
“randomization” approach to statistics.

Randomization Tests

While the practical development of randomization tests
is a relatively recent phenomenon, the basic principles
were developed almost 60 years ago (Fisher, 1935). The
basic tenet underlying randomization testing is simply
this: if, under the null hypothesis of no effect of
grouping, random assignment was used, every possible
arrangement of the data is equally likely. Thus, much
like the simple binomial test, it is possible to
empirically generate a null distribution without making
any further assumptions about the data. An example
will help illustrate.

Taking a paradigm that should be familiar to all
Cognitive Science readers, consider an experiment
comparing two isomorphs of the Tower of Hanoi in



which the dependent measure is the number of minutes
the subjects take to solve the problem they are given.
Group A receives the standard TOH, while Group B
receives a more difficult isomorph, such as the
“Monster Change” isomorph. The results of running
nine subjects are as follows:

Group A: 12, 7, 4, 3
Group B: 8, 10, 12, 15, 22 

The difference between means is 6.9.
If subjects were randomly assigned, there are 
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possible unique arrangements of the data, and, if the
null hypothesis of no association between the groups is
true, all of these arrangements are equally likely. Yet
some of these arrangements are clearly more “extreme”
in some sense than others. Consider

Group A: 3, 4, 7, 8
Group B: 10, 12, 12, 15, 22

and 
Group A: 3, 22, 8, 10
Group B: 4, 7, 12, 15, 12.

The difference between the means in the first case is 8.7
minutes, while in the second it is a mere -0.75. Yet
under the null hypothesis, these are equally probable
outcomes. Given these nine scores, what is the
probability that they would randomly fall into this most
extreme arrangement? It  is 1/126, which is
approximately 0.008. Moving up a level of abstraction,
what is the probability of observing a result that is as
extreme or more than the result that was actually
obtained? That is, What is the probability that the
results observed could have been observed by chance if
the null hypothesis is true? 

As with the binomial test, one simply figures out
the probability of each outcome that is as extreme or
more than the obtained data. Doing this requires
permuting the data and obtaining some index of
difference (in this case, the difference between the
means) for every unique permutation of the data so that
those permutations that are as or more extreme than the
observed date can be identified. The number of
permutations that meet the extremity criteria is then
divided by the number of possible permutations,
directly yielding a probability value. This can then be
compared to the nominal alpha level (conventionally,
.05), and, if less that this value, one can conclude that
the data are not independent of the grouping-that is, that
there was an effect of the manipulation.

In the example presented, assuming a one-tailed
test, there are five permutations (including the one 

observed) that meet the criteria. Thus, the p-value for
this experiment would be 5/126, or about .04. In this
case, this is almost exactly the same p-value that one
would obtain with a traditional t-test. Parametric tests
and randomization tests do not always agree, however.
For example, if the most extreme observation in the
data (22) is changed in the direction of greater
difference, as little as five minutes (to 27), the t-test is
no longer significant! On the other hand, the
randomization test is not affected at all by this change.

How is this possible? A moment’s reflection should
make this clear. Under randomization, the more extreme
data point will change the size of the differences
observed in each permutation, but will not change the
ordering. In the case of the t-test, however, even though
the difference in means used to compute the t statistic is
larger (7.9 as opposed to 6.9), the estimate of the
standard error of the mean (the denominator of the t
statistic) is inflated as well (3.29 vs. 4.20), and the p-
value of this test is just slightly higher than .05, and
would lead the researcher to fail to reject the null
hypothesis. Parametric tests are sensitive to extreme
data points, particularly when sample sizes are small.

Evaluating Randomization Tests

There are several relevant questions beyond simple
appropriateness-there are practical considerations as
well. The remainder of this paper will address several
issues relevant to the use of randomization tests in
behavioral research.

Flexibility 

While the logic underlying the randomization test is
quite straightforward for two independent samples, it is
not immediately obvious that such a method generalizes
to more complex designs. While the logic is somewhat
more complex, the same basic techniques can be
applied to arbitrarily complex factorial designs,
repeated-measures designs, correlations, trend analysis
and so on (Edgington, 1987). There is still some
disagreement on how to treat interactions in complex
designs, but a seemingly sound method has been
developed by ter Braak (1992). 

More complex multivariate statistical methods,
such as factor analysis, path analysis, and the like, do
not yet have randomization counterparts. However, the
use of such statistical techniques is rare in Cognitive
Science.



Acceptability

Despite the apparent sensibility of randomization
testing, one important consideration is the general
acceptance level associated with such a technique.
Could one, for instance, publish a paper having used
such a technique?

While randomization tests are not yet a common
practice in behavioral research, they are discussed in
such conservative statistical references as Siegel &
Castellan (1988). Randomization tests are beginning to
appear in introductory statistics texts (May, Masson, &
Hunter, 1990) and have been discussed seriously in
statistical psychology journals for over a decade (e.g.
Still & White, 1981).

Agreement

Certainly, one consideration is whether or not the
adoption of a new statistical technique will greatly
change the expectations of the researcher in terms of
things like statistical power. That is, will these tests
generally behave as well or better than the tests
currently in use?

The answer to this question is a qualified yes. When
the distributional assumptions of the ANOVA are met,
the randomization test and the ANOVA generally agree
with one another (e.g. Bradbury, 1987). This leads to
the rationale used by some proponents of parametric
tests-why use less standard randomization tests when
the results generally agree?

The critical issue is that the results of the two
procedures do not always agree, as demonstrated in the
example above. It is generally difficult to predict
exactly what the behavior of both parametric and
randomization methods will be with different kinds of
distributions. Violation of distributional assumptions
tends to result in less power with parametric statistics,
particularly with smaller sample sizes. Randomization
tests appear to be more robust to such violations. (For
an excellent brief review of parametric vs.
nonparametric methods, see Hunter & May, 1993).

Pedagogy

Another important issue that arises in the use of any
tool is the ease with which it can be learned/taught. It
should be relatively clear that it is possible to learn the
basic concepts of randomization testing rapidly, as the
example used earlier should illustrate. It may, in fact, be
easier to learn randomization tests, as one does not have
to first master concepts like sampling distributions,

variance pooling, and the like, which are typically
prerequisites to understanding even simple t-tests. Some
instructors (e.g. Peterson, 1991) maintain that
instruction in randomization concepts focuses students’
attention on issues of statistical inference and away
from the more mundane memorizing formulae and
such.

Availability

The case for using randomization tests, particularly in
the kind of experiments typically done by Cognitive
Scientists, is a strong one, perhaps “too good to be
true.” If randomization tests are the best thing to do,
why isn’t everyone already using them?

There are several answers to this question. First, the
full development of  randomization techniques
(especially for analyzing interactions) is a relatively
recent phenomenon, of which too few practitioners are
aware. People simply do not know what the tests are or
how they are available.

Second, most researchers use standard statistical
packages such as SAS, SPSS, BMDP, SYSTAT, etc.
These packages have yet to incorporate randomization
tests, so performing such tests requires the use of some
other program, or alternately, programming the tests by
hand. There are statistics programs that include
randomization tests, such as NPSTAT (May, Masson, &
Hunter, 1989), StatXact (Mehta & Patel, 1991), RT
(Manly, 1991), and CANOCO (ter Braak, 1988). 

Programming randomization tests by hand is
actually not all that difficult, and some texts even
include code to make this easier. Siegel & Castellan
(1988) includes code for the two-sample case, and
Edgington (1987) includes extensive amounts of code
for a variety of randomization tests.

One consideration when doing randomization tests
is that of computational power. The number of
permutations grows explosively as the number of data
points increases. For example, there are over four
million permutations in a design with three groups and
nine cases per group. Increasing the design to ten cases
per group raises this number to over 30 million.
Obviously, computing all the possible permutations
would be impractical in such cases. However, randomly
sampling from the space of possible permutations yields
an approximate test that is still valid, but for power
considerations the largest possible sample should be
used (see Edgington, 1987, for a complete explanation
for this method of approximation). 10,000 permutations
is typically considered more than adequate, but this is
still time-consuming. 

Computational considerations provide another



reason why randomization tests are particularly
appropriate to research, or rather, researchers in
Cognitive Science. Many Cognitive Science researchers
are both competent programmers and have access to
high-speed workstations, which typically provide
excellent floating-point performance.

Conclusions

Since most empirical research in Cognitive Science is
based on experimentation, and most experiments violate
one or more of the assumptions of traditional parametric
statistical tests, the Cognitive Science community
should be sensitive to issues of statistical methodology.
Randomization tests provide a viable, practical
alternative to parametric tests, and thus it is
recommended that Cognitive Science research adopt, or
at least carefully consider, the use of randomization
tests.
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