
Abstract

A recent issue of the journal Cognitive Science (1993,
vol. 17, no. 1) centered around a debate between two
“camps” within the field, the “situated action” (or SA)
camp and the “traditional,” symbol processing camp.
Though the debate in that journal suggests that, at some
levels, symbol processing and SA are
incommensurable, this paper disputes that view. If the
message of the SA community is taken to be that
traditional approaches neglect the importance of the
environment, then not only is the message an important
one, but the typical symbol processing system is guilty
as charged. However, this does not mean that, in
principle, symbol processing systems must have this
limitation. The two approaches can work hand-in-hand
to produce more general and more accurate
computational models. A framework of building
models of the environment and having models of
cognitive agents work with those models is proposed,
from which a smooth integration of SA and symbol
processing is not only possible, but desirable. The
framework proposed here is instantiated with a
production system called S-CAPS, and the efficacy of
building models of both the problem-solver and the
problem environment is demonstrated.

Introduction
A recent issue of the journal Cognitive Science (1993, vol.
17, no. 1) centered around a debate between two “camps”
within the field, the “situated action” (or SA) camp and the
“traditional,” symbol processing camp. While an engaging
debate, this discussion shed more heat than light on the
subject—both sides presented arguments for their points,
with neither side yielding enough ground to reach a point of
productive dialogue. The central aim of this paper is to
make the case that these positions are not only not
incommensurable, but complementary. First, the positions
of both camps (admitted caricatures) will be outlined, then
a general approach to integration will be laid out, and
finally, an example of the integration will be provided.

The Situated Position

At the most extreme, the situated position is quite close to
Skinner’s position of environmentalism: all of the
interesting behavior of an organism can be understood by
examining the environment in which the behavior occurs.
Though many of the SA proponents claim that their

position is not, in fact, behaviorist, this might well be
attributed to a lack of appreciation for Skinner’s work.
Take, for example the following illustration from Skinner
(1966):

The differences between rule-following and contingency-
shaped behavior is obvious when instances are pretty clearly
only one or the other. The behavior of a baseball outfielder
catching a fly ball bears certain resemblances to the behavior
of of the commander of a ship taking part in the recovery of a
reentering satellite. Both move about on a surface in a
direction and with a speed designed to bring them, if possible,
near a falling object at the moment it reaches the surface.
Both respond to recent stimulation from the position,
direction, and speed of the object, and they both take into
account the effects of gravity and friction. The behavior of
the baseball player, however, has been almost entirely shaped
by contingencies of reinforcement, whereas the commander is
simply obeying rules derived from the available information
and from analogous situations. 

The parallel between this illustration and the example of
Truckese navigators vs. European navigators found in the
preface to Suchman’s (1987) Plans and Situated Actions is
striking. (Interestingly, nowhere in Suchman’s book or any
of the SA replies to Vera and Simon (1993) is Skinner
referenced.) The position taken by many of the SA
advocates is similar to that of Brunswik (1956), more
recently discussed by Hammond (1986), that current work
in psychology and decision-making lacks “representative
design;” that the environments typically studied by
behavioral scientists are not relevant to the environments in
which the behavior typically occurs. Again, this is clearly
parallel to the arguments put forth by another prominent
member of the SA community in reference to classroom
education’s failure to generalize to supermarket situations.
(Lave, 1988).

One might take the position, then, that what the field of
cognitive science ought to do in regard to SA is the same
thing that it did with Skinner’s behaviorism—reject it lock,
stock, and barrel. If this is the obvious response, why has
SA won over many followers? One hypotheses about the
source of the SA community’s success is that the cognitive
“revolution” threw the proverbial baby out with the bath
water. In rejecting behaviorism, the cognition community
went to far, and threw out the environment as well. By
ignoring the influence of the environment on behavior, key
features of the interaction between humans and the world
are missed, such as the rich, non-deterministic nature of
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complex behavior. Another often-commented upon aspect
of real environments is that they are dynamic systems that
constantly change, whether the agent is acting upon them or
not (e.g. Kirlik, Miller, & Jagacinski, 1993).While perhaps
taking certain points a to an extreme, the SA community
has a legitimate and important message.

The Symbol Processing Position

Traditional cognitive science has been largely concerned
with formalism, both in the sense of structural formalism in
theories (e.g. computer simulations) and formal empirical
methodology (i.e. controlled experimentation). This has led
cognitive science to be concerned mainly with easily-
formalizable domains. These are typically “high-level”
cognitive activities, such as reading and playing chess.
While an understanding of reading and chess is certainly
important, it can be argued that the proportion of a person’s
life spent engaged in such high-level activity is small.

The focus on formal, high-level tasks has, however, had
its impact on symbolic models. Models created by
researchers in this area often are essentially unable to
interact dynamically with the world. The standard form of
interaction with the world is that a model will receive some
kind of input, take that input and go off computing (not
again looking outside itself) until it is finished processing,
and then “act” upon the world by producing some output.
Models of the world, on the other hand, are usually
impoverished and static if they are attempted at all. 

Take as an example a typical production system such as
OPS5. While strict OPS5 systems are not commonly used
in cognitive science, there are several systems based or
similar to OPS5: Soar (Newell, 1990), CAPS (Just &
Carpenter, 1992), and others. Note that the commentary
here applies to most symbol processing systems, not just
production systems. 

OPS5 systems rarely act upon the real world, or even a
model of the real world. OPS5 has two memory systems:
working memory and production memory. Pattern-
matching takes place, and those productions that match
patterns present in working memory are instantiated. In
OPS5, only one of the instantiated productions is fired,
meaning the actions associated with the production are
executed. The actions of productions do one of three things:
delete items in working memory, add items to working
memory, or change the attributes of items in working
memory. Note the commonality: all of these actions affect
the system’s working memory. There is nothing external to
the system! (See Figure 1 for a depiction of this process.)

“Actions” taken by the system are typically represented
by adding working memory elements that represent the
state of the world after the action (postconditions) and
deleting those elements that are no longer true. There is
nothing that represents the action itself, and system actions
are the only processes that modify the contents of working
memory. Actions are completely deterministic in the sense
that the results of an “action” are always the same. In
addition, these “actions” are always successful. There is no
dynamic world, as only the system can modify working
memory. The state of both the agent and the world is totally
controlled by the knowledge present in the agent—a sort of
telekinesis—and completely represented in a memory
system that resides within the agent. Not surprisingly, such
systems normally have an unbounded space in which to
represent the world, which is another strange and unrealistic
property that lends itself to the belief in large “map” and
“plan” type structures.

Thus, while Vera and Simon (1993) claim that it is
possible to make computational models “situated,” this is
generally left as exactly that: a possibility. With few
exceptions, the symbol processing approach has paid little
more than lip service to modeling the environment. 

Integrating the Environment
One of the central problems with the label “situated action”
is that it implies that some action is “situated” and some
action is not. In Lave’s (1988) example of grocery store
arithmetic, for example, calculation in the market is
characterized as “situated” while calculation in the
classroom is not).1 Surely, though, both the classroom and
the grocery store are environments, and both of them can be
formally modeled. And cognitive scientists are still actively
modeling students doing mathematics. Why not, then,
maintain models of both the cognitive agent and of the
environment in which it is behaving? A truly integrated
framework must not only be able to model both, but must
model both. In order for a model built upon such a
framework to run at all, explicit models of both the agent
and the environment should be required, thus addressing the
interaction of the agent and its situation.

Constructing such models will obviously require
modifications to the way traditional symbolic models are
constructed, but these modifications need not be all that
severe, as implicitly suggested by Suchman (1987, p. 63):
“We walk into a situation, identify its features, and match
our actions to it.” This is remarkably close to the way a
traditional production system of if-then rules works, so such
a system will once again be taken as a starting point, though
many of these changes could conceivably be applied to
other symbolic systems as well.

What are the properties that a framework for integration
should support? One of these features is that the framework
should distinguish between internal and external

1 Some SA advocates may, in response, claim that all action is
situated—if so, the label SA is misleading. This is one of the
primary reasons some SA advocates have taken to the term
“situativity” (Greeno, personal communication). Either way, it
does not affect the point made here.
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Figure 1. OPS5-style system



representations. That is, the framework should make it clear
what things are “stored” in the environment, and which are
represented internally by the agent. In such a framework,
the impact of such “distributed cognition” should be clear.
People obviously perform the same task (such as
multiplying ten-digit numbers) better in some environments
(with paper and pencil) than in others (without any external
aid). There needs to be a performance difference implied by
a difference in locus of representation.

Second, the agent should be reactive. That is, the agent’s
behavior should not be strictly tied its goals and/or plans. In
one current model, ACT-R (Anderson, 1993), productions
can fire only if they can match to the current goal of the
agent. Thus, if the agent is multiplying two numbers and a
fire breaks out in the room, the agent is doomed to perish in
the flames since actions like “exit the room” are irrelevant
to the current goal context. Goal management needs to be
looser and the agent more reactive than in most traditional
models.

Another distinction that should be enforced by the
framework is a distinction between internal and external
actions taken by the agent. The processes by which an agent
model acts upon the world and by which an agent model
acts upon internal representations should be different. Since
internal representations are “owned” by the agent, direct
action on those is appropriate. Also, the agent should not
control the outcome of taking action. This is the purpose of
the external model; it is the part of the model that should
make explicit what can  and cannot be done.

The environment model should be responsible for
managing the contents of the system’s external memory.
This includes not only handling changes of state in response
to the agent’s actions, but changes over time due to the
dynamics of the system. In a model of an air traffic
controller, for instance, the environment model must handle
both the controller’s actions and the actions taken by the
planes the controller is monitoring. 

It should be noted that there have recently been systems
proposed with some of these features. The most noteworthy
of these systems include Teton (VahLehn & Ball, 1991),
which has loose goal management, DiBS (Larkin,
1989),)which has a split between internal and external
memory and the Phoenix project (Cohen, Greenberg, Hart,
& Howe, 1989), which contains an environmental model.
These are useful beginnings, but do not completely address
all of the issues raised above.

A First Attempt at Integration
This section will describe a framework that is intended to
meet the criteria listed in section 2. This framework is
based on CAPS (Just & Carpenter, 1992), and will be
referred to as S-CAPS (for “situated CAPS”). The goal of
S-CAPS is to move away from traditional “internal only”
agent models typical of symbolic models by adding an
environment model, as well as specifying how the
environment model and the agent model interact. The basic
flow of information and control in S-CAPS is presented in
Figure 2. Note that rectangles designate structures internal
to the agent, and ovals external structures.

S-CAPS, like other production systems, contains a
production memory and a working memory. Unlike most
other systems, it also contains a declarative long-term
memory (LTM) and a world model. The declarative LTM is
of little interest in the present discussion; what is critically
important is the world model. The world model controls
what is available to the agent via perception of the external
world.

The first feature to note about S-CAPS is that productions
are sensitive to things that are present not just in the internal
working memory of the agent. External and internal
representations are separate. CAPS is nearly unique among
production systems in that working memory can be
bounded—it is not of unlimited size. In S-CAPS there are
two “pools” of working memory activation: the pool
internal to the agent, which is bounded, and the external
pool, which is not. It is not the purpose of this paper to go
into detail about the capacity limitations of working
memory; suffice it to say that there is such a limit, and it
adversely affects the performance of the system in terms of
both speed and accuracy of performance. Both internal and
external representations are available to the pattern-
matcher, which does not distinguish between elements in
internal and external memory. Thus from the memory
perspective, the difference between internal and external
representations is the bounded nature of internal working
memory.

The second major difference between S-CAPS and
traditional cognitive science frameworks is that productions
cannot directly affect everything over which pattern
matching is done. Productions can alter the activation of
elements in the internal working memory, but cannot
directly cause changes in the representation of the
environment. Instead, productions cause actions to occur. In
S-CAPS, actions have a specific form: an action by the
agent is an input into the world model. The world model is
free to handle that input in whatever way it chooses. Once
an action is initiated by the agent, the agent model does not
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Figure 2. Information and control flow in S-CAPS



control its outcome—the world model does. The agent’s
actions can be thought of as requests to the world model for
certain outputs, with no guarantee of success. 

Another important feature is that the contents of the
matching area (the available percepts) can change without
the agent doing anything. Note in Figure 2 that “time” is an
input into the world model. At the beginning of each
production cycle, the world model gets a message or
procedure call that some amount of time has passed, and to
act accordingly. Thus, the system can be (in fact, must be)
responsive to a dynamically changing world. 

There are several interesting ramifications of constructing
the S-CAPS framework this way. One of them is that the
agent-environment system can act without the use of time-
and space-intensive cognitive operations. Note that in
Figure 2, there is an action path from the world model to
perception to productions and back to the world model that
does not pass through the agent’s LTM or WM. Of course,
the agent has to acquire the appropriate productions, but
once this has been accomplished such a process can run
quickly and fluidly, giving the system a capacity for and
providing a clear notion of the idea of “skilled
performance.” Since little or no “reasoning” takes place
during such a process, it should also be fairly rigid.

Another implication of such a framework is that two tasks
with identical structure in terms of the problem space
(Newell & Simon, 1972) but different representations, one
primarily internal and one primarily external, should have
different performance characteristics. The reliance on
internal working memory should cause the isomorph with
the higher reliance on internal representation to be both
slower and more error-prone.

Illustrating Integration: S-CAPS at Work
The effectiveness of the S-CAPS framework will be
demonstrated with  two simulation models of very different
tasks, the traditional Tower of Hanoi and a pilot completing
a preflight checklist.

Tower of Hanoi

This example is intended to illustrate several of the points
mentioned earlier, and will be accomplished through the
use of two models of the Tower of Hanoi (TOH). First, the
two models will not differ in terms of the knowledge held
by the agent, but in the behavior of the world model.
Second, they will demonstrate the performance difference
between internal and external representation, based on the
different world models. Note that this is quite unlike most
cognitive science approaches to modeling, where different
performance is almost always modeled by differences in the
agent’s knowledge or capacity. 

The Tower of Hanoi is probably the most well-studied
puzzle in cognitive science history. The problem space for
the TOH is relatively small, having only a few states and
simple variants of one operator, moving a disk to another
peg. One of the things that has been investigated in the
TOH literature is the effect of varying the amount of
information represented in different isomorphs of the
puzzle. These isomorphs all have the same number of states

and operators in the same order, but different surface forms.
In general, the amount of time subjects spend on these
problems is inversely related to the amount of external
representation provided by the isomorph. This is a
reasonably powerful and well-known effect (Kotovsky,
Hays, & Simon, 1985; Zhang & Norman, 1994).

Strangely enough, this effect has only been modeled
once, by Kotovsky and Kushmerick (1991). This model
was fairly coarse and, more importantly, it placed the locus
of the performance difference as being within the subjects:
“[t]he different problems are defined by the subjects’
internal problem representation...” This seems
counterintuitive, since there are no systematic differences
between the subjects in the different conditions—what is
different is the puzzle they solved. Thus, the source of the
difference ought to be based on different models of the
puzzle, not different models of the subjects. 

Different environment models form the basis of the S-
CAPS simulations. In order to represent subjects working
on two isomorphs of the TOH, one set of productions was
built to simulate the subjects. The two isomorphs of the
TOH modeled here, referred to as “easy” and “hard,” differ
in their ability to represent move legality. The “hard”
version of the world model simply responds to actions and
updates the world state. The “easy” version does this and
more: it computes and makes available a “constraint:” the
legality of moves. This is a reasonable thing for the world
model to do—the standard TOH, for instance, may be said
to do this. Since an illegal state (a large disk on top of a
small disk) is clearly represented in the standard TOH, the
world model essentially gives this information to the agent
model for “free”—the world model handles the
computation of move legality, rather than the agent. This
should result in better performance on the “easy” version.
(This should, of course, generalize to any two “isomorphic”
problem spaces in which one computes constraints for the
agent and the other does not.)
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Simulation results were in accord with this prediction.
Several simulations were done with both the easy and hard
versions of the problems, each with a different amount of
activation allowed (i.e. capacity) in the internal working
memory. Figure 3 shows that the number of production
cycles required to solve the puzzle is clearly a function of
both the type of puzzle and the size of the agent’s internal
working memory. In all cases, the “hard” puzzle did, in
fact, take longer to solve than the easy puzzle. In addition,
performance on the “hard” puzzle was much more sensitive
to the decrease of memory activation available to the agent.

The performance of the simulations at activation
capacities greater than nine were the same as those for nine.
Simulations were not run at capacities less than those
shown on the graph because with smaller capacities the
simulations failed to solve the puzzle.

Clearly, the use of external representation has a profound
effect on the performance of the simulation, and there is a
clear interaction between puzzle difficulty and activation
capacity. The increased difficulty of puzzles where the
agent must compute move legality is in accord with the
empirical results presented by Kotovsky, Hays, & Simon
(1985) and Zhang & Norman (1994). Just, Carpenter, &
Hemphill (in press) have demonstrated that subjects’
working memory capacity is also related to performance on
the TOH, and the S-CAPS simulations are consistent with
this result.

Preflight Checklist

The second set of simulations will serve to further illustrate
many of the same points, but on a more “real-world” task.
Human data for comparison is not available for this task,
but it serves to highlight the fact that the S-CAPS
framework has applications outside of the somewhat
overdone TOH puzzle. (These simulations were originally
presented in Kirlik & Byrne, 1994.)

The task performed by the pilot modeled is a relatively
straightforward preflight checklist. The
pilot is required to make a number of
safety checks before takeoff, but while
working his way through the list, he is
interrupted by a critical message from
the control tower. He is required to read
the message, decide if he can meet the
request of the tower, and send a reply.
There are three “versions” of the pilot:

Pilot 1. This pilot has little support
from the environment, in that he has no
copy of the checklist handy and has to
maintain the entire list in working
memory throughout the task.

Pilot 2. This pilot is different in that he
has a copy of the checklist, but nothing
that affords checking items off when
they are completed—he has no way for
the world to tell him where on the
checklist he is.

Pilot 3. This pilot has both a checklist
and a pen with which to check off items

from the list.
Simulation results are presented in Figure 4. Essentially,

this figure represents the robustness of the pilots to the
interruption. Since Pilot 1 is poorly supported by his
environment, his performance degrades most easily. In fact,
the first deviation from the initial baseline time represents
the pilot having to start the checklist over from the
beginning after being interrupted. Further decrements to
performance are a results of the system spending
production cycles “thrashing” to recover goals and list
items.

Pilot 2’s performance is better, but the deviation from the
baseline time for this pilot also represents restarting the
checklist from the beginning. Later degradation of
performance with reduced WM capacity is not as poor as
for Pilot 1 since list items do not have to be recovered, only
goals.

Pilot 3’s performance is clearly the most robust in the
sense of recovering from the interruption because the
environment has afforded him a way to not only represent
the checklist, but also his location in it. His performance
eventually degrades, primarily due to the difficulty
involved in reading the message from the tower.

Thus, these simulations further reinforce the SA position
that an important part of understanding complex human
behavior is understanding the environment in which it
occurs—all of these simulations used exactly the same set
of productions to model the pilot.

Conclusions and Implications
Though sometimes characterized as opposing paradigms,
traditional symbol processing systems and the situated
action perspective can, in fact, be integrated.This is not
merely a possibility, but ought to result in an increased
understanding of human behavior. By explicitly modeling
both the environment and the cognitive agent, it is possible
to examine three important sources of variance in behavior:

Figure 4. Pilot checklist performance
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that which is a result of characteristics of the agent, that
which is a results of constraints and affordances in the
environment, and that which is a result of the interaction of
the agent-environment system. The S-CAPS framework
provides a first step toward such integration, and
demonstrates, even on the abstract TOH puzzle, the
importance of viewing behavior as a situation-cognition
interaction.

Clearly, there is much work to be done. We need more
formalisms for describing environments, and ways to
translate those formalisms into dynamic models with which
our simulated agents can interact. While a useful example,
the Tower of Hanoi provides a limited picture of the kind of
environments that need to be modeled. More interesting
results would certainly be provided by supplying a model of
a knowledgeable agent in a richer and more dynamic
situation, such as an airplane cockpit. Though a task of such
complexity may seem a daunting challenge, both the
symbol processing community and the situated action
community should look upon such an endeavor as an
opportunity to enrich each other’s perspective, rather than
an arena for trying to prove the other camp wrong.

Acknowledgments
I would like to acknowledge the financial support of the
National Science Foundation through its graduate
fellowship program. I would also like to thank Alex Kirlik
for many of the ideas and discussions which led to this
paper, as well as comments on an earlier draft. I would also
like to thank Sashank Varma for his assistance in modifying
CAPS. Finally, I would like to thank the anonymous
reviewers for their comments.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum.
Brunswik, E. (1956). Perception and the representative

design of psychological experiments (2nd ed.). Berkeley,
CA: University of California Press.

Cohen, P. R., Greenberg, M. L., Hart, D. M., & Howe, A.
E. (1989). Trial by fire: Understanding the design
requirements for agents in complex environments. AI
Magazine, 10, 32–48.

Hammond, K. R. (1986). Generalization in operational
contexts: What does it mean? Can it be done? IEEE
Transactions on Systems, Man, and Cybernetics, 16, 428-
433.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of
comprehension: An individual differences approach.
Psychological Review, 99, 123-148.

Just, M. A., Carpenter, P. A., & Hemphill, D. D. (in press).
Constraints on processing capacity: Architectural or
implementational? To appear in D. Steier, & T. Mitchell
(Eds.) Mind matters: A tribute to Alan Newell.

Kirlik, A., & Byrne, M. D. (1994). Identifying
Environmental Contributions to Skilled Interaction.
Presented at the NASA Ames Cognitive Modeling
Workshop, February 23, 1994.

Kirlik, A., Miller, R. A., & Jagacinski, R. J. (1993).
Supervisory control in a dynamic and uncertain
environment: A process model of skilled human-
environment interaction. IEEE Transactions on Systems,
Man, and Cybernetics, 23, 929-952.

Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why
are some problems hard? Evidence from the Tower of
Hanoi. Cognitive Psychology, 17, 248-294.

Kotovsky, K., & Kushmerick, N. (1991). Processing
constraints and problem difficulty: A model. In
Proceedings of the Thirteenth Annual Conference of the
Cognitive Science Society (pp. 790–795).

Larkin, J. H. (1989). Display-based problem solving. In D.
Klahr, & K. Kotovsky (Eds.), Complex information
processing: The impact of Herbert A. Simon (pp.
319–341). Hillsdale, NJ: Lawrence Erlbaum.

Lave, J. (1988). Cognition in practice: Mind, mathematics,
and culture in everyday life. New York: Cambridge
University Press.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Skinner, B. F. (1966). An operant analysis of problem
solving. In B. Klienmuntz (Ed.), Problem solving:
Research, method, and theory, pp. 225-257. New York:
John Wiley.

Suchman, L. (1987). Plans and situated actions: The
problem of human-machine communication. Cambridge,
England: Cambridge University Press.

VanLehn, K., & Ball, W. (1991). How Teton blends
situated action and planned action. In VanLehn, K. (Ed.),
Architectures for intelligence (pp. 147-188). Hillsdale,
NJ: Lawrence Erlbaum.

Vera, A. H., & Simon, H. A. (1993). Situated action: A
symbolic interpretation. Cognitive Science, 17, 7-48.

Zhang, J. & Norman, D. A. (1994). Representations in
distributed cognitive tasks. Cognitive Science, 18,
87–122.


