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Abstract

Understanding the interaction of a user with a designed device such as a GUI requires clear 

understanding of three components: the cognitive, perceptual, and motor capabilities of the user, 

the task to be accomplished, and the artifact used to accomplish the task. Computational 

modeling systems which enable serious consideration all of these constraints have only recently 

begun to emerge. One such system is ACT-R/PM, which is described in detail. ACT-R/PM is a 

production system architecture that has been augmented with a set of perceptual-motor modules 

designed to enable the detailed modeling of interactive tasks. Nilsen’s (1991) random menu 

selection task serves two goals: to illustrate the promise of this system and to help further our 

understanding of the processes underlying menu selection and visual search. Nilsen’s original 

study,  two earlier models of the task, and recent eye-tracking data are all considered. Drawing 

from the best properties of the previous models and guided by  information from the eye-tracking 

experiment, a series of new models of random menu selection were constructed using ACT-

R/PM. The final model provides a zero-parameter fit to the data that does an acceptable, though 

imperfect, job of capturing the data. 
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The Psychology of Human-Computer Interaction (Card, Moran, & Newell, 1983) is often 

credited with the creation of the field of human-computer interaction and is, at the very least, one 

of its most central early influences. This book introduced the Model Human Processor (MHP) as 

an engineering model of human performance and GOMS (for goals, operators, methods, and 

selection rules) as a method of task analysis. The conceptual basis for GOMS and, at heart, the 

underlying belief about the best way to flesh out the MHP, is production rule systems. Since that 

time, the dominant production rule systems have been the ACT family of systems (Anderson, 

1983, 1993; Anderson & Lebiere, 1998) and the Soar architecture (Newell, 1990). EPIC (Kieras 

& Meyer, 1997) is a more recent, but promising and influential, entry into this arena. 

The applicability and success of GOMS and its MHP-inspired extension, CPM-GOMS 

(see John & Kieras, 1996, for a review), has clearly indicated that this is a fruitful approach for 

desktop-style user interfaces. However, the future of the human-computer interface is not on the 

desktop. Increasingly, computers with user interfaces are appearing in tasks where they 

previously have not been present, such as automobile navigation systems. These new 

applications provide significant challenges, both practical and theoretical, to traditional analyses. 

These interfaces are increasingly multi-modal and time-critical. While a 200 ms difference in 

execution times for a simple operator in a desktop application may be inconsequential, the same 

difference in an in-car navigation system can have serious safety implications. Thus, it is 

incumbent on researchers in HCI to develop methods for dealing with the full complexity of 

high-performance multi-modal interfaces. Traditional GOMS analysis will not be enough.

This paper presents a theoretical framework and computational modeling system 

designed to address such applications. The system is ACT-R/PM, for ACT-R Perceptual-Motor, 

and is based on the most recent ACT-R production system architecture (Anderson & Lebiere, 

1998). The goal of this paper is to describe the ACT-R/PM system in detail and provide an 

example of the kind of analysis and modeling that this architecture enables with a model of an 

apparently simple task, the selection of single-character items from a randomly-ordered menu. 

While this task is somewhat artificial, it provides some insight into the issues involved in high-

performance user interfaces. Before delving in detail into ACT-R/PM or the menu selection task, 

a general  framework for analyzing interactive tasks will be described.
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1. The Embodied Cognition-Task-Artifact (ETA) Triad

Gray (2000; Gray & Altmann, in press) describes the beginnings of a framework for 

understanding interactive behavior, the Cognition-Task-Artifact triad, and the ETA framework is 

based on that idea with some modification. The central notion is that interactive behavior of a 

user interacting with an interface is a function of the properties of three things: the cognitive, 

perceptual, and motor capabilities of the user, termed Embodied Cognition, the Task the user is 

engaged in, and the Artifact the user is employing in order to do the task (see Figure 1).  

--------- insert Figure 1 about here ----------

As Gray and Altmann describe, traditional disciplines have generally considered these 

pairwise rather than as a triad. Computer scientists have traditionally considered the design of 

artifacts to support particular tasks, but often ignored constraints imposed by the capabilities and 

limitations of the user. Conversely, the experimental psychology community has typically 

considered the user, but often with artificial tasks or in context that minimize or eliminate the 

role of the artifact. Ethnographic analysis typically considers the context of artifacts and the 

tasks, but often overlooks issues rooted in the capabilities and limitations of the human element. 

Cognitive modeling forces the analyst to consider all three at once. A modeling system 

such as Soar or EPIC provides a description of the capabilities and limitations of the user, but 

contains no task or artifact. However, for a simulation model to run based on a such a system, it 

must be given both a task to perform and a complete and detailed description of the artifact being 

used. 

First, interactive behavior depends upon the user’s Embodied Cognition. Gray and 

Altmann have referred to this member of the triad simply as “Cognition,” but this route has not 

been taken here because it is more than just the cognitive capabilities and limitations of the user 

that matter, but the perceptual-motor as well. Traditional AI and cognitive science systems have 

made the mistake of treating people as purely cognitive entities. While that may suffice for 

abstract tasks such as chess, neglect of perceptual-motor capabilities and limitations will not 

serve in high-performance applications such as air traffic control and in-car navigation systems. 
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As computer systems become increasingly embedded and mobile, the demands they place on our 

perceptual-motor systems are likely to become increasingly central to understanding interactive 

behavior. Thus, we need theories and applications that pay more than lip service to these issues. 

The second component is the Task. Issues in determining the true task to be analyzed are 

overlooked with surprising frequency. For example, recent studies of WWW behavior (e.g.. 

Nielsen, 1997; Tauscher & Greenberg, 1997)—certainly a “hot” topic—have failed to consider 

whether the tasks they ask users to do are typical of the tasks users actually try to accomplish in 

their normal use of the Web. Optimizing interfaces for tasks for which they are not actually 

being employed is a waste of designers’ time and users’ effort. Methods like protocol analysis, 

contextual inquiry, and ethnographic analysis can be valuable in understanding the actual tasks in 

which users are engaged. 

A second important issue is the way by which success in performing a task is measured. 

Is it time, user satisfaction, or some other metric? In high-performance systems, time and errors 

are likely to be the most central measures with things like user preference and satisfaction less 

critical (though still not completely unimportant). Mismatches here can be costly. For example, 

Landauer (1995) argues that  despite vast proliferation of information technology into the 

business world, minimal gains in productivity have been realized because system designers and 

purchasers were not sensitive to end-user productivity. Even though this particular situation may 

have improved, this is still a critical issue.

In general, HCI researchers are much better at understanding and augmenting the 

Artifact. The artifact, in conjunction with the user, determines which operators the user can apply 

to reach their goals and often plays a central role in maintaining state information for the task. 

The artifact is the component that is most subject to design—it is often much easier to redesign 

the device than change the underlying task or change the cognitive, perceptual, or motor 

characteristics of the user. The design of the artifact is typically fraught with tradeoffs, such as 

the tradeoff between the goal of making information available to the user and limitations of 

screen space. In fact, one of the central potential uses of performance analysis such as 

computational modeling is to help evaluate such tradeoffs. 

One of the important pieces of this framework is fidelity to true artifacts. In computing 
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systems, the artifact in the analysis is more often than not a piece of software. In that spirit, one 

goal of researchers in computational modeling and HCI is the use of the same software both by 

users and by the computational cognitive models. This can require solving non-trivial software 

integration problems, some of which have been solved in a limited way in ACT-R/PM.

This framework for analysis of interactive behavior is not entirely novel. In particular, 

agent-oriented AI researchers have been concerned with many of these issues for some time 

(e.g., Agre & Rosenschein, 1996), particularly Cohen, et al.’s (1989) “behavioral ecology” 

approach. These approaches are similar, though generally less concerned with understanding 

human behavior in a human factors context. 

Overall, the approach is intended to be an engineering approach. That is, absolute 

precision in prediction, which is the goal of much of the modeling work in cognitive psychology, 

is not the goal here. Instead, the goal here is to develop a  framework which is capable of 

generating predictions within 20% of the true value with as few free parameters as possible. 

Obviously, more precise predictive ability will be required for high-performance applications; 

however, the initial goal is a system that will provide good predictions with little parameter-

tweaking, and can then be refined as necessary in cases where more precision is required.

2. ACT-R/PM

ACT-R/PM (first presented in Byrne & Anderson, 1998) is an effort to augment a system 

that has been remarkably successful at describing and predicting human behavior in primarily 

cognitive domains with a perceptual-motor system. This makes the coordination of perception, 

action, and cognition, rather than just cognition itself, the central problem. There are several 

motivations for such a system. For present purposes, the central motivation is this: real-world 

tasks with real-world artifacts depend on these capabilities. Beyond that, the theoretical and 

empirical challenges of constructing such a system are themselves formidable and fascinating. 

One thing many researchers in cognitive science have failed to keep in mind is that perceptual 

and motor capabilities came first; there are plenty of organisms that function quite well with 

extremely limited cognitive machinery. By failing to consider the perceptual-motor aspects of 
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the human system, the baby has been thrown out with the bath water. This does not mean 

cognition is unimportant, quite the contrary, the cognitive system has the bulk of the 

responsibility in coordinating the three. However, it does mean that the focus of cognitive 

analysis will often be slightly different, rather than a pure analyses of problem spaces (as per the 

“classic” Newell and Simon paradigm), the analysis will center on control and coordination of 

resources that are not always cognitive.

What follows is a detailed description of ACT-R/PM. This level of detail is necessary in 

order for the presentation of the models later in the paper to be entirely unambiguous, and there 

is no other description of the full system in the literature that is entirely adequate. 

--------- insert Figure 2 about here ----------

ACT-R/PM is organized as depicted in Figure 2. In many ways, this system is similar to, 

and was certainly heavily influenced by, Kieras and Meyer’s (1997) EPIC system. In ACT-

R/PM, there are four perceptual-motor modules which communicate with central cognition, 

which is realized as a production system (in this case ACT-R).  Central cognition is more or less 

serial (spreading activation processes work in parallel) and each module is itself more or less 

serial, but the various components all run in parallel with one another. Thus, the production 

system could be retrieving something from long-term declarative memory while the Vision 

Module is shifting attention in the visual array and the Motor Module is preparing to press a key. 

This is in agreement with the original MHP, which consisted of a collection of serial processors 

acting in parallel with one another.

2.1 ACT-R Production System

The first four chapters of The Atomic Components of Thought (Anderson & Lebiere, 

1998) thoroughly describe ACT-R, so only a cursory description will be presented here. The 

flow of information in ACT-R is summarized in Figure 3, which is adapted from Anderson and 

Lebiere (1998). ACT-R has essentially three memories, a declarative memory which contains 

chunks, which are facts like “3 + 4 = 7,” a production (or procedural) memory which contains 

production rules, IF-THEN condition-action mappings, and a goal stack which also contains 

chunks, these encoding intentions. These are all organized around the current goal, which is also 

ACT-R/PM for HCI

7



a chunk. 

--------- insert Figure 3 about here ----------

Production rules’ IF sides are matched against the current goal and contents of 

declarative memory. One of the productions that has its conditions matched is selected to fire. 

The basic computational increment is the production cycle, which consists of matching 

productions against memory, selecting a production to fire, and then executing the THEN side of 

the selected production. 

The process of determining which production to fire on a given cycle is called conflict 

resolution. This is one of many features that distinguishes ACT-R from EPIC and Soar; in ACT-

R, only one production fires per cycle and in Soar and EPIC all matching productions fire on a 

particular cycle. Conflict resolution is based on a rational analysis (e.g., Anderson, 1990) of the 

expected utility of a production vs. its costs, which are in terms of time. Conflict resolution will 

be considered in more detail in Section 4.2.

Productions may request the retrieval of a chunk from declarative memory, and the time 

to complete this operation is a function of the activation of the chunk to be retrieved, which in 

turn is a function of the estimated need odds of the chunk, represented by an activation value. A 

substantial body of work has gone into the equations which determine chunk activation and that 

work has been fruitful in describing human memory (e.g. Anderson & Reder, 1999; Anderson, 

Bothell, Lebiere,  & Matessa, 1998). References to retrieved chunks are often added to the 

current goal, hence the “retrieval result” arrow going from declarative memory to the current 

goal in Figure 3.

The goal memory is itself a stack, onto which new goals can be pushed and satisfied 

goals popped. Goal structures are important in directing the behavior of the system and are a 

useful place to begin an analysis of errors (Gray, 2000; Byrne & Boviar, 1997). Goals that are 

popped off the goal stack do not simply vanish into the bit bucket, but rather reside in declarative 

memory and are subject to the same activation processes affecting other chunks. 

ACT-R is also a learning system. Declarative memories can be compiled into 

productions, and both productions and chunks have various numerical quantities associated with 

them that can be learned. These quantities are used primarily in the conflict resolution and chunk 
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matching process. A much more detailed description of ACT-R and its various mechanisms and 

parameters can be found in Anderson and Lebiere (1998) and the interested reader is strongly 

encouraged to read the first four chapters of that volume.

Finally, communication between central cognition and the perceptual-motor modules 

takes two forms. Production actions can request that a particular module perform a certain 

command, and modules can modify ACT-R’s declarative memory, primarily by creating 

declarative chunks.

The basic time parameter for the production system is 50 ms. That is, a basic production 

cycle takes 50 ms, though the cycle can take longer if there are retrievals from declarative 

memory  involved. Seemingly small differences in the availability of declarative memory 

elements can have a large impact on the system’s performance, particularly under multiple-task 

conditions (Byrne & Anderson, in press).

2.2 Vision Module

Given the visual nature of most current user interfaces, the Vision Module is fairly 

central in modeling most HCI tasks. As one might expect, the Vision Module is used to 

determine what ACT-R/PM “sees.” How this is managed by the Vision Module is depicted in 

Figure 4. Each object on the display will be represented by one or more features in the Vision 

Module’s icon. The Vision Module creates chunks from these features which provide declarative 

memory representations of the visual scene, which can then be matched by productions. 

Generally, each icon feature maps to one chunk in declarative memory, though this is not always 

the case. In particular, text is often represented not at the level of letters, but as a set of primitive 

visual features of which the letters are composed (more details on letter features will be provided 

in section 4.1). 

--------- insert Figure 4 about here ----------

For the Vision Module to create a chunk representing an object, visual attention must first 

be directed to the location of that object. In order to do that, the Vision Module supports a 

MOVE-ATTENTION operator. However, in order to shift attention to a location, ACT-R/PM 

must also have a representation for visual locations. The state of the visual array (the icon) is 
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reflected in “virtual chunks” which can be matched by the IF side of production rules.When 

ACT-R/PM is “looking” for an object on the display, one or more locations may be matched by 

this process, depending on the number of objects on the display and the specificity of the chunk 

match. 

The Vision Module represents basic information about the visual features in the display 

such as their location, their color, their size, etc. A production may specify values (or ranges of 

values for continuous properties such as location or size) that are acceptable for a match. When a 

match is found, the location chunk is no longer virtual; a full-fledged chunk is added to ACT-R’s 

declarative memory, and this chunk represents the knowledge that there is something at a 

particular location. Note that all locations assume a static observer; the same point on the screen 

is always represented with the same coordinates.

This location chunk can then be passed back to the Vision Module along with a request to 

move attention to that location. Attention shifts happen asynchronously with respect to the 

production system and have a duration that is a settable system parameter but defaults to 135 ms, 

based on previous research with the predecessor to ACT-R/PM, the ACT-R visual interface 

(Anderson, Matessa, & Lebiere, 1997). If there is anything in the icon still at that location when 

the attention shift completes, then a chunk will be created which represents that object (a visual-

object chunk), and that chunk is considered the focus of visual attention.  

Being the visual focus has ramifications for the activation of that chunk and its 

properties. In particular, the properties of the focus are highly active and should be retrieved 

rapidly. Because ACT-R’s declarative memory system is complex, including decay and 

associations between declarative chunks, the integration of a visual system and the declarative 

memory system is not entirely straightforward. Unlike other simulated visual systems (e.g. 

EPIC), it is not possible to simply delete declarative memory elements that represent objects 

which are no longer visible. Thus, the visual system has to designate a particular chunk as being 

“current” so that the object currently being attended can be discriminated from memories of 

other objects.

If there is more than one object at a location when an attention shift completes, then the 

Vision Module will encode—create chunks representing—all the objects at that location. 
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However, only one of those objects can be the focus of visual attention, so one object must be 

selected. The selection is based on the properties of the feature that was originally used to 

generate the location chunk. Thus, if the request to shift attention is based on a location 

originally specified to have a red object, then if there is a red object at the location when a shift 

completes, it will tend to be preferred as the focus of attention.

The basic assumption behind the Vision Module is that the visual object chunks are 

episodic representations of the objects in the visual scene. Thus, a visual object chunk with the 

value “3” represents a memory of the character “3” available via the eyes, not the semantic 

THREE which is involved in arithmetic facts—some retrieval would be necessary to make that 

mapping. The same thing applies to words and other objects. Note also that there is no “top-

down” influence on the creation of these chunks; top-down effects are assumed to be a result of 

ACT-R’s processing of these basic visual chunks, not anything that is done in the Vision 

Module. Pylyshyn (1999) provides a compelling argument for such modularity.

The Vision Module also supports rudimentary visual tracking. Once an object has been 

attended to, the Vision Module can be told to track it with a START-TRACKING operator. This 

will update the location chunk associated with the visual object on every production cycle, which 

also provides a simple memory for where the object has been.

2.3 Motor Module

ACT-R/PM’s Motor Module is based directly on the description of EPIC’s Manual Motor 

processor found in Kieras and Meyer (1996). While the Vision Module is the most complex 

module internally, it is not the most complex in terms of the number of timing parameters and 

commands supported. That description best fits the Motor Module. The Motor Module represents 

ACT-R/PM’s hands, and therefore supports a wider range of actions, and contains a number of 

parameters for representing movement.

Because most output (e.g. key presses and mouse clicks) in using a computer interface 

are manual, they will go through the Motor Module. The Motor Module receives commands 

from the ACT-R productions to perform actions. In general, movement specification requires 

specification of a movement type, called a style (which is specified by the command name) and 

ACT-R/PM for HCI

11



one or more parameters, such as the hand/finger that is to make the movement.

When a command is received by the Motor Module, the Motor Module goes through 

three phases: preparation, initiation, and execution. In the preparation phase, the Motor Module 

builds a list of “features” which guide the actual movement (Rosenbaum, 1980, 1991). The 

amount of time that preparation takes depends on the number of features that need to be 

prepared—the more that need to be prepared, the longer it takes. Each feature takes 50 ms to 

prepare.

The Motor Module has a small buffer which contains the last set of features that it 

prepared. The actual number of features that need to be prepared for a new movement depends 

upon two things: the complexity of the movement to be made and the difference between that 

movement and the previous movement. On one end of the scale, if the Motor Module is simply 

repeating the previous movement, then all the relevant features will already be in the buffer and 

will not require preparation. On the other hand, a production could request a movement that 

requires a full five features and they may not overlap with the features in the Motor Module's 

buffer, in which case all five features would need to be prepared.

Movement features are organized into a hierarchy, with the movement style at the top of 

the hierarchy. If the movement style changes, then all of the features required for a movement 

must be prepared over again. Then, if the movement styles are the same but the hand for the 

movement differs, all features at and below the hand level require preparation. Different 

movement styles have slightly different hierarchies, but in general the hierarchy is style > hand > 

finger > direction = distance. That is, if the style, hand, finger and distance for an aimed 

movement do not change, but only the direction changes, only the direction needs to be prepared 

anew. If the finger changes, however, three features need to be re-prepared: finger, direction, and 

distance. Not all movements have all these levels, for instance, a “punch” movement (described 

below) only requires the hand and finger be specified.

When feature preparation is complete, the Motor Module executes the specified 

movement. The first 50 ms of movement execution is termed movement initiation. The amount 

of time that a movement takes to execute depends on the type and possibly the distance the 

movement will traverse. Simple movements have a minimum execution time (also 50 ms, called 
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the “burst time”) and more complex movements (such as pointing with the mouse) have a longer 

execution time based on Fitts’ Law.

The Motor Module can only prepare one movement at a time (though it can be preparing 

features for one movement while executing another). If the Motor Module is in the process of 

preparing a movement and another request is sent, the later request will be ignored and the Motor 

Module is said to be “jammed.” ACT-R/PM prints a notification of this event for the analyst. The 

way to avoid jamming the Motor Module is to include a left-hand side test of the Motor 

Manager’s state, which is represented in another “virtual chunk.”

The ability to prepare one movement while executing another gives the Motor Module an 

elementary ability to pipeline motor operations, and aggressive scheduling of this pipeline can be 

an important aspect of high-performance tasks (e.g. Byrne & Anderson, in press; Chong, 1998). 

Simple scheduling decisions can have a surprisingly large impact on performance in rapid tasks, 

and the issue of scheduling should not to be taken lightly.

The Motor Module includes several movement styles, again based on EPIC’s Manual 

Motor Processor. They are: 

• Punch. This is a simple downstroke followed by an upstroke of a finger, for pressing a 

key that is already directly below a given finger. A punch has two features: the hand (left/right), 

and the finger (e.g. ring, middle). The punch takes a total of three bursts to execute: one to 

initiate the movement, one to complete the downstroke, and one to complete the upstroke. 

However, the key below the finger being punched does not register simply at the bottom of the 

downstroke. Instead, there is another parameter which controls how long after movement 

initiation begins that the mechanical switch will actually close, which is called the key closure 

time. This time is estimated at 10 ms. 

A mouse click is simply a punch of the finger that is over the relevant mouse button.

• Peck. This is a directed movement of a finger to a location followed by a keystroke, all 

as one continuous movement. This movement style has four features: the hand, the finger, the 

direction of the movement, and the distance of the movement. Movement execution time is 

governed by a modified version of the Welford (1968) formulation of Fitts’ Law, which is:
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where tM is the minimum aimed movement time (default: 100 ms), k is a constant (75 ms 

for a peck), d is the distance to be moved, and w is the width of the target. Thus, no aimed 

movement can take less than tM, and other than that the duration is a function of the ratio of the 

distance to be moved to the width of the target. In most cases these are keys. Target width is 

computed by taking the width of the chord through the target region taken on the line drawn 

from the starting point of the movement through the center of the object, as recommended by 

MacKenzie (1992).

• Peck-recoil. This is essentially identical to a peck, except that the finger returns to its 

original starting position at the end of the movement. 

• Ply. Moves a hand, generally the one holding the mouse, to a known location in space. 

This movement style has three features: the hand, the direction of the movement, and the 

distance of the movement. Movement time for a ply is also governed by Fitts’ Law, but with a 

different constant k (100 ms). 

Typically, the target of a ply is an object on a display. The object is typically represented 

by a visual object chunk, and a reference to that chunk is passed to the Motor Module when a ply 

is requested. However, not all movements are made to objects, so the Motor Module will also 

accept a chunk representing a visual location.

In order to make modeling more convenient, the Motor Module also accepts a PRESS-

KEY command, which then is translated into the appropriate punch or peck-recoil movement 

with the assumption that the hands are in the “home row” position. This also assumes a touch-

typist, so if either assumption is invalid this command need not be used.

2.4 Audition and Speech Modules

The Audition and Speech Modules are somewhat less developed than their Vision and 

Motor counterparts, and are not critically important for the menu search task that is the primary 

concern of this work. More information about these Modules can be found in Byrne and 
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Anderson (1998).

2.5 The Artifact

Another critical component of ACT-R/PM is its connection to the artifact. ACT-R/PM is 

implemented in Macintosh Common Lisp (MCL) and can directly communicate with many of 

the standard interface objects in MCL’s graphics library, such as buttons and text fields. The 

Vision Module’s icon is generated by querying the data structures of the interface objects, and 

ACT-R/PM generates keystrokes and mouse movements and clicks to which the interface 

responds. In many ways, ACT-R/PM acts as a “virtual user “ and in fact interacts with the same 

(or very slightly modified) software that human experimental subjects do. This removes a degree 

of freedom in the modeling work, because all ACT-R/PM models use the same kinds of 

representations and timings across all models. There is much less opportunity to “hide” the work 

of the model in the visual perception or motor output processes.

ACT-R/PM does not currently “see” every single aspect of the display—for example, it 

does not distinguish between Helvetica and Times fonts, though it does “know” the fonts have 

different sizes—but it sees enough to produce qualitatively and quantitatively realistic behavior. 

As described earlier, the display is represented by a set of visual features, and ACT-R/PM “sees” 

those features. The Speech Module can communicate with the MacOS’s built-in speech 

synthesizer and does produce synthetic speech, though this is not likely to be mistaken for human 

speech. Audio perception is more or less entirely simulated, but present interfaces are still 

primarily visual. As the underlying computer technology improves, so hopefully will ACT-

R/PM’s abilities in these areas.

This has not been realized in as many languages or designed to be as general as Ritter, et 

al.’s (2000) Sim-eye and Sim-hand, but is more perceptually accurate. ACT-R/PM at present  

only works with interfaces written in MCL, and requires code-level access to the data structures 

representing the display. However, work has been done integrating ACT-R/PM with non-Lisp 

based applications via serial communication, and it may be possible in the future to integrate 

ACT-R/PM with more general bitmap-based approaches (e.g. Zettlemoyer & St. Amant, 1999; 

see also St. Amant & Riedl, this issue). At the moment, however, ACT-R/PM’s integration with 
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the Artifact is somewhat limited.

2.6 Summary

ACT-R/PM is a production system architecture that has been augmented with a set of 

perceptual-motor modules designed to enable the detailed modeling of interactive tasks which 

have cognitive, perceptual, and motor components. This does not represent so much a 

modification of ACT-R but an extension of it. ACT-R was chosen as the underlying production 

system specifically because we did not want to reinvent a theory of cognition to model 

interactive behavior, but instead wanted to build on ACT-R’s successes in areas such as problem 

solving and memory.

The process of extending ACT-R with perceptual-motor capabilities introduced a number 

of issues, such as the management of declarative memory and vision, as well as new system 

parameters. Table 1 presents a summary of the relevant parameters in ACT-R/PM and their 

default values. Note that these are actually mean values; ACT-R/PM actually draws each value 

from a rectangular distribution which has the parameter as the mean and a coefficient of 

variation of 1.3. Randomization may be turned off for debugging purposes, but this is the default 

for simulation runs, and generally requires that Monte Carlo simulations be run to obtain 

predicted values from models. Stochasticity plays multiple roles. First, the human perceptual-

motor system being modeled is itself noisy. Stochasticity prevents the model from producing 

exactly the same response time from trial to trial. Second, averaging over “noisy” Monte Carlo 

runs tends to produce smoother responses to change than the sharp discontinuities produced by 

non-stochastic models. Third, the system’s behavior when timing is stochastic is not always 

identical to that when times are fixed. For a more thorough discussion, see Byrne and Anderson 

(in press). While individual modelers are free to change the default parameters, this violates the 

spirit of using ACT-R/PM as a predictive tool and changing these parameters is not 

recommended practice.

3. Random Menu Selection
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In order to both demonstrate the application of ACT-R/PM and  the complexity 

underlying even simple, rapid tasks that can be found as components of more complex high-

performance tasks such as air traffic control, the task of random menu selection will be 

considered. While this exact task is somewhat artificial, designers impose similar searches for 

specific targets in displays that appear randomly-ordered. For example, consider the display of 

options when using an automated teller machine when on an international trip. The interface is 

likely to be unfamiliar, and even well-known options (e.g. “withdraw from checking”) can 

generate searches through options that are ordered more or less arbitrarily.

First, the task itself and the original data from Nilsen (1991) will be described. Two 

models of this task already exist, one using ACT-R/PM’s predecessor,  ACT-R with the visual 

interface (Anderson, et al. 1997), and one based on EPIC (Hornof & Kieras, 1997). Both of those 

models will be described, and then an eye-tracking experiment first presented in Byrne, 

Anderson, Douglass, and Matessa (1999) and its results will be described. This raises a number 

of issues with both of the models. Because all of these are discussed elsewhere, presentation of 

each item will be kept as brief as possible.

In light of the previous models and new eye-tracking data, a new model of the task based 

on ACT-R/PM will be presented. This model is slightly different in spirit from the other models 

and explores the issue of learning in this task.

3.1  The Nilsen Experiment (Nilsen, 1991)

Menus of one form or another have been a central feature of the user interface for some 

time (see Norman, 1991 for a review). Mouse-based pull-down (requiring that the mouse button 

be held down) and click-down (which stay open once clicked until another click occurs) menus 

are more recent advances that have become ubiquitous in the modern graphical user interface. 

Nilsen (1991, Experiment 2) performed an experiment which provided detailed enough 

data to constrain computational cognitive modeling. In this experiment, users were presented 

with a single digit on the screen and a “Go” button. They clicked the button, and then searched 

for that digit in a menu of randomly-ordered digits that appeared as a result of the button click. 

This procedure is shown in Figure 5. Users first saw the display in panel (a), then clicked in the 
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“Go” box, and saw a display like the one in panel (b). Nilsen used three menu lengths, 3, 6, and 

9.

--------- insert Figure 5 about here ----------

Results of the experiment are displayed in Figure 6. Users’ response time is an 

approximately linear function of serial position in the menu, with each successive position being 

approximately 100 ms slower than the last. This suggests that search is serial through the menu, 

and no “pop-out” effects are occurring (Triesman & Gelade, 1980).

The exception to the linear slope is serial position 1, or the first menu position. Time for 

this position is slightly higher than response time for position 2. This will be termed the “Nilsen 

effect.” There also appears to be a small overall effect of menu length, with longer menus being 

slower. 

--------- insert Figure 6 about here ----------

The data further suggest that Fitts’ Law, while an excellent predictor of mouse movement 

time, is not a good characterization of the menu search process. Users took much longer and had 

steeper slope as a function of target position than would be predicted by Fitts’ law. Thus, it was 

argued by Nilsen  that the bulk of the time users spend on this task is time for visual search.

3.2 The ACT-R Visual Interface Model (Anderson, Matessa, & Lebiere, 1997)

This model was originally presented in Anderson, Matessa, and Lebiere (1997) and a 

revised model and some new data were presented in Anderson, Matessa, and Lebiere (1998). The 

model is fairly simple, but generates a number of interesting predictions. The model has a visual 

system similar to the one in ACT-R/PM and is based on the idea that letters are composed of 

primitive visual features. The target letter is attended and a feature in the letter randomly chosen. 

A search production then tests for an unattended location that contains that feature with the 

lowest y-coordinate (towards the top of the display) and shifts attention to that location. If the 

letter there is the target, then the target is clicked. If not, then the search process continues down 

the menu. This is represented in two productions, HUNT-FEATURE and FOUND-TARGET:

HUNT-FEATURE
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IF the goal is to find a target that has feature F
and there is an unattended object below the current location with feature F

THEN move attention and the mouse to the closest such location

FOUND-TARGET

IF the goal is to find a target
and the target is at the currently attended location L

THEN move the mouse to L and click

This model does a reasonable job of accounting for the slope of the line, but does not 

account for the menu length effect or the Nilsen effect. However, because the search is guided by 

visual features, it predicts that search for a letter target on a background of numbers should be 

faster than search for a number target on a background of numbers. This is because the average 

feature overlap is smaller for letter targets than for number targets against a number background, 

and thus the search hits fewer distractors on the way to the target. Indeed, Anderson, Matessa, 

and Lebiere (1998) found that search for a letter target among numbers is reliably faster than a  

search for a number target among numbers.

Assuming that attention shifts manifest themselves in saccades, the ACT-R Visual 

Interface model predicts: 

(1) Eye movements should be exclusively top-to-bottom. The model never backtracks.

(2) The distance moved on each saccade should vary from trial to trial and menu to 

menu—items which do not share features with the target will be skipped over and thus not every 

item is examined. In that sense, the search is not exhaustive and many items will be skipped.

(3) The eye should never overshoot the target. 

These predictions are empirically testable, but eye-tracking is required to test them.

3.3 The EPIC Model (Hornof & Kieras, 1997)

Hornof and Kieras (1997) present several versions of a model of this task, the final one 

presented in the paper is termed the “Parallel Processing Dual Strategy Varying Distance Hybrid 

Model,” but for the sake of brevity will simply be referred to as “the EPIC model.” The long title 
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is a result of this model being a blend of several simpler models.

First, EPIC differs substantially from ACT-R/PM in two critical areas: the visual system 

and the cognitive system. The cognitive system in EPIC is also a production system, but is 

different in numerous ways. Most relevant to the current concern, EPIC can fire multiple 

productions at once. Thus, if more than one item can be placed in working memory by the visual 

system, they can all be evaluated in parallel. (This is the “parallel processing” aspect of the 

model). 

Not surprisingly, EPIC’s visual system allows it to create declarative representations for 

multiple objects in parallel, but is limited to items that can be simultaneously foveated. Thus, the 

search time will be a function of how many items EPIC can examine in parallel, which will in 

turn be a function of how many items can be foveated at once.

Because Nilsen did not record the viewing distance to the monitor, it is not certain how 

many menu items users could fit into a 2° fovea (this is EPIC’s foveal diameter). Thus, the EPIC 

model is a 15/85 blend of being able to foveate only one item at a time and being able to foveate 

three items at one. This is the “varying distance” aspect of the model. The source of the 15/85 

ratio is unclear and appears to be a free parameter in the model.

--------- insert Figure 7 about here ----------

The EPIC model is also a 50/50 blend of two search strategies, random and systematic. 

These two strategies are described in Figure 7, which are based on figures in the original Hornof 

and Kieras (1997) paper. This is the “dual strategy” aspect of the model. Systematic searches 

move exclusively from top to bottom, while random searches proceed starting anywhere and 

moving anywhere. It is not clear from the Hornof and Kieras (1997) paper whether the results are 

based on averaging the results from the two strategies or whether the model randomly selects 

which strategy to use before each trial, or what the basis for that selection would be if it did so. 

Again, the source of the 50/50 ratio is unclear and this also appears to be a free parameter in the 

model.

Regardless, this model makes a number of predictions about eye movements:

(1) Eye movement patterns should conform to a pattern that consists of 50% sequential 

top-to-bottom searching, and 50% randomly-ordered searching.
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(2) In cases of serial top-to-bottom search, the users’ eyes should move down the menu a 

constant distance in each saccade, which is exhaustive in that every item of the menu from item 1 

to the target item is examined.

(3) The eye should “overshoot” the target item by one saccade with some regularity, 

since users are examining multiple items in parallel.

This model is substantially more complex than the ACT-R Visual Interface model, but 

does do a better job of accounting for the original data. It does predict both the length effect and 

the Nilsen effect. However, this model does not make use of feature information and thus does 

not predict that searches for letters with number distractors should be faster.

3.4 Eye-tracking Data (Byrne, Anderson, Douglass, & Matessa, 1999)

Because the two models were somewhat mixed in regard to how well they accounted for 

the reaction time data and they both make very specific predictions about eye movements, Byrne 

et al. (1999) conducted an  experiment on random menu search and collected not only reaction 

time data, but eye-tracking data as well. Some of the results presented here were originally 

presented in the original Byrne, et al. (1999) paper and some of the results presented here are 

novel. This is not the first time eye-tracking has been employed in a visual search experiment 

(e.g. Findlay, 1997; Motter & Belky, 1998a, 1998b; Zelinsky & Sheinberg, 1997; Shen & 

Reingold, 1999). Generally, what these experiments have shown is that saccades can indeed be 

guided by the features present in non-foveal regions, and that eye-tracking does reveal important 

information about the visual search process. The search task used here is not as straightforward 

as the ones used in the majority of the previous work (most of them included a very salient color 

difference between targets and non-targets), but eye-tracking for this experiment seemed the best 

way to differentiate between the two models.

3.4.1 Methods

The task used was very similar to Nilsen’s and the Anderson, Matessa, and Lebiere 

(1998) followup. Users were first shown a screen containing a rectangle with the word “Target:” 

followed by a target character. When the user clicked on this rectangle, a menu of characters and 

a bounding rectangle appeared (see Figure 8). Users then searched for the target item in the menu 
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and clicked on it. Visual point-of-regard (POR) and mouse position were tracked throughout the 

entire trial, and response time and accuracy were also recorded for each trial.

--------- insert Figure 8 about here ----------

11 undergraduate participants were paid for their participation in the study, and had 

normal uncorrected vision and were familiar with the use of computer menus.

There were two primary within-subjects factors in the experimental design: menu length 

and target location. Three menu lengths were used: 6, 9, and 12 items. Longer menus than those 

used in the original Nilsen experiment were used because pilot data showed a general lack of 

interesting eye movements for 3-item menus. All target locations were used for each menu 

length.

There were other within-subjects factors in the design as well: target type and distractor 

type. Targets could be either letters or digits, as could non-target distractors. Thus, there were a 

total of 108 trials in the experiment: 6 6-item menu trials (one for each target location) + 9 9-item 

menu trials + 12 12-item menu trials X 2 target types X 2 distractor types. The 108 trials were 

randomly ordered by the experimental software. Participants also received 36 practice trials with 

randomly-chosen values on all factors. There was also a between-subjects manipulation. In one 

condition, the “Target” field remained on the screen when the menu appeared (as in Figure 2) 

and in the other, the “Target” button disappeared when it was clicked. Because of the time and 

effort involved in running the eye-tracking study, not enough data are available to reveal effects 

of target type, distractor type, and presence of the target button. Thus, these effects will not be 

considered.

The eye tracker used was an ISCAN RK726/RK520 HighRes Pupil/CR tracker with a 

Polhemus FASTRACK head tracker. Head-mounted optics and a sampling rate of 120 Hz were 

used in this experiment. This system, like many other laboratory eye trackers, works by shining 

an infrared light on the eye and taking a video image of the eye. From that image, it is possible to 

determine the pupil center and the point on the cornea closest to the camera (the corneal 

reflection) and take the vector between them. This vector changes as the eye orients to different 

positions on the screen and with calibration to known points, it is possible to compute visual 

POR. The magnetic polhemus is used to compensate for head movements. POR reports by the 

ACT-R/PM for HCI

22



eye-tracking equipment are typically accurate to within one-half degree of visual angle.

POR and mouse position were recorded approximately every 8 ms by the experimental 

software. Stimulus and POR/mouse data for each trial were recorded so that all individual trials 

could be “replayed” at various speeds. An experimenter monitored each experimental trial and 

recalibrated the eye tracker if there appeared to be sizable disparity between reasonable 

expectations about where users would look (in particular, users needed to look at the target on 

each trial) and the position reported by the tracker.

Users were seated approximately 30 inches from a 72 ppi computer display. Characters 

were 13 pixels high (approximately 0.34° of visual angle) with 26 pixels (approximately 0.69° of 

visual angle) separating characters. Thus, simultaneously foveating three characters would 

require a fovea of approximately 2.4° visual angle in diameter. (EPIC assumes that the fovea 

covers 2° of visual angle and characters must be foveated to be recognized.)

Sampling at 120 Hz, despite short trials, generates a great deal of raw data over 108 trials. 

However, from this raw data it is possible to compute where and when fixations have occurred. 

This can be done either by assuming that any eye position within a given region for more than 

some threshold number of milliseconds is a fixation (dwell-based) or assuming that any period of 

time showing relatively low velocity is a fixation (velocity-based). For the current data set, both 

methods were initially used and both methods yield approximately the same result. Because the 

velocity based method yields slightly less noisy data, the results presented here are based on that 

method of post processing. For each trial, the location of each fixation (with location 1 being the 

top item in the menu) was recorded. 

This experiment is not a completely faithful replication of Nilsen’s original experiment, 

in several ways. First, the menu items used here were spaced further apart which was necessary 

to make it possible to discriminate fixations on adjacent items. Nilsen’s subjects had many more 

trials (1440) than our participants, because wearing the eye-tracking equipment is uncomfortable 

over long periods of time and this would have entailed frequent re-calibrations. Third, as 

previously mentioned, we did not use the same menu lengths as Nilsen, because eye movements 

with pilot subjects for 3-item menus showed little of interest. Further, Nilsen’s original 

experiment was all number targets with number distractors; we used a mixture of letters and 
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numbers for targets and distractors in an attempt to reproduce the results of Anderson, et al. 

(1998). Finally, the menus  used here were surrounded by a bounding rectangle, unlike the 

original Nilsen experiment. This again was done on the basis of pilot data; it was hoped this 

manipulation would keep participants’ fixations more “on target” in the horizontal plane.

Of course, because this experiment is not identical to the original Nilsen experiment, 

there may be concerns about the applicability of the original EPIC and ACT-R models. On the 

other hand, the basic task is virtually identical, and there is no reason to believe that the 

fundamental strategy for attentional control adopted by either model would be different under 

these conditions. The ACT-R model would clearly not be affected by these changes, though 

some of the performance parameters in the EPIC model might change slightly due to the 

increased certainty about character spacing and viewing distance.

3.4.2 Results

Results for response time are presented in Figure 9a. Clearly, response time is a function 

of target location, with higher locations generating longer response time. This is consistent with 

the Nilsen data. However, other aspects of Nilsen’s data set were not reproduced as clearly. First, 

the slope of the function for the two larger menu sizes is somewhat shallower, around 75 ms (as 

opposed to 103 observed by Nilsen) and is even shallower for 6-item menus. Further, there 

appears to be very little main effect of menu size (controlling for position), as opposed to what 

Nilsen found. This may be a function of the larger spacing between items used here. A second 

distinct possibility is that this is a practice effect (Nilsen’s subjects had more practice). Notice 

also that the Nilsen effect is larger here than in the original experiment, and seems to apply to the 

second item as well as the first item. Error rates were negligible in all conditions and will not be 

discussed.

--------- insert Figure 9 about here ----------

Results for fixations/saccades differ very slightly here from what was presented in the 

original Byrne, et al. (1999) paper due to slight differences in how fixations were assigned to 

items; the current results use an improved algorithm designed to compensate for systematic bias 

introduced by the magnetic head-tracking system. The results for average number of fixations is 
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presented in Figure 9b. Neither the response time data nor the number of fixations do an 

especially good job of discriminating between the ACT-R model and the EPIC model, but they 

will provide a basis for comparison with the ACT-R/PM model to be presented later. More 

interestingly, the fixation data and the response time data match each other very well. The 

overall correlation between the mean response times and the mean number of fixations is r(26) = 

0.97, p < 0.001, which suggests that the primary determiner of response time in this experiment 

is indeed the visual search process. (This correlation is reduced somewhat when the data are not 

aggregated by condition; the overall correlation between number of fixations and response time 

for the raw trial data is r(1179) = 0.71, p < 0.001. This is still impressive.)

 The most informative data from the perspective of model evaluation come from an 

analysis of the direction and distance of the saccades. Recall that the ACT-R model predicts that 

the first saccade should go to the first item if it has a feature match. On average, given that the 

experiment used both letters and digits as both targets and distractors an equal proportion of the 

time, the feature model on which the ACT-R Visual Interface is based predicts that, on average, 

the probability of a random character matching a randomly-selected feature is 0.44. Based on 

that, it is possible to derive the model’s predictions for the distribution of the landing point of the 

first saccade. It is also possible to derive the landing location predicted by the EPIC model.  

When the model is executing the systematic strategy, which is half the time, the model should 

look at item 1, the top item. However, because users could possibly foveate two items, it is 

perhaps more fair to distribute the first fixation equally between items 1 and 2.The other half of 

the time the model predicts that the fixation should have a rectangular distribution across the 

items. Because of varying menu lengths, this yields a distribution which tails off slightly.

--------- insert Figure 10 about here ----------

Figure 10 presents a histogram of initial saccades, and Table 2 presents the same data 

along with the predictions of the ACT-R model and the EPIC model. Neither model fares 

particularly well here, the r-squared of the EPIC predictions is 0.37 and the r-squared for the 

ACT-R model is 0.52. The ACT-R model is closer because it predicts fewer long initial saccades 

but neither model is especially impressive. The apparent bias further down the menu may be 

what is referred to as a “global effect” (Findlay, 1982), which is the tendency for the initial 
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saccade to target the visual center of gravity of the display. This tendency seems to be quite 

robust, including in visual search through strings of characters when the target character is cued 

(Coeffe & O’Regan, 1987). However, it is unlikely that is the full story, because the effect does 

not appear stronger for the longer menus, which obviously have a more distant visual center of 

gravity. 

Figure 11a presents a histogram of “middle” saccades, all those saccades between the 

first one and the last one. Some trials contribute no observations here, but most trials contribute 

more than one. Positive distances indicate a saccade down (in the top-to-bottom direction) the 

menu, and negative numbers indicate saccades up (in the bottom-to-top direction) of the menu. 

This is a clear indictment of the ACT-R model, which predicts zero bottom-to-top saccades. It 

instead predicts a distribution identical to what it predicts for the initial saccade, which is 

presented in Table 2. 

--------- insert Figure 11 about here ----------

 The EPIC model makes somewhat more complex predictions here. Roughly 50% of the 

saccades should be down one (or two) items, since the model should run the systematic strategy 

on half the trials. While the modal saccade distance is indeed a 1, the total proportion is nowhere 

near what the EPIC model predicts. The other 50% of the trials should be completely random, 

and the distribution of saccades should be approximately rectangular (there should be some 

tailing off for extreme positive and negative values, but it should be perfectly symmetric with a 

mean of zero). Thus, the distribution should look something like a rectangular distribution with 

spike up to 25% for saccades of length 1 and 2 (or 50% at length 1). The empirical distribution 

does not seem a good match to the pattern predicted by either ACT-R or EPIC, though the EPIC 

model is somewhat closer here.

Figure 11b presents the histogram for the last saccade made on each trial. The ACT-R 

model  again makes the same prediction, which is again clearly wrong. The EPIC model predicts 

a distribution that is 50% one type of saccade and 50% random. For systematic searches, the eye 

should overshoot the target since it processes the items looked at in a fixation during the 

following saccade. Thus, the terminal fixation under this strategy  ought to always be -1 or -2, 

and this should be the case on 50% of the trials. On the remaining trials, the distribution should 
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again be approximately rectangular (at the very least, symmetric), since the saccade will be 

completely random. Again the EPIC model’s predictions are better, but neither model is 

especially close. 

What these data do not reflect, and what is hard to express in a graph, is the experience of 

watching all the trials replayed. Watching even a small sample of the over 1000 trials it is 

apparent that neither model represents what users actually do. Both models essentially impose a 

global strategy which is rigidly followed by users until the end of the trial. The strategy is either 

strictly top-to-bottom or entirely random. Individual trials are rarely, though occasionally, strictly 

top-to-bottom. Very few trials appear entirely random, either. Users appear to have some 

predisposition for top-to-bottom saccades, but by no means is this followed rigidly. However, 

when users deviate they rarely appear to be completely random, particularly with the initial 

fixation. What the protocols appear to reflect is very local decision-making on the part of the 

users, rather than a global strategy which is held throughout the trial.

Overall, the results of the eye-tracking are fairly clear with respect to the models: neither 

is a good characterization of the visual search process actually employed by users. It is important 

to note that this is not a claim it is impossible to construct a good characterization of the menu 

search process with EPIC or ACT-R with the visual interface. Rather, this is an assessment of the 

existing models. Certainly, given this new data, it is possible—even likely—that better-fitting 

models could be constructed with either system. ACT-R/PM, is, in many ways, itself a synthesis 

of the two systems, and the next section of the paper presents a new set of ACT-R/PM models of 

this task. However, the goal of these models is not so much to provide the best possible fit to the 

data, but attempt to understand how such a local and complex strategy could be developed.

4. An ACT-R/PM Model of Random Menu Selection

The perceptual-motor machinery surrounding ACT-R has changed since the ACT-R 

Visual Interface; ACT-R/PM is significantly more complex, but this richness enables ACT-R to 

be extended into more sophisticated tasks and with a substantially improved ability to handle 

high-performance situations such as multiple-tasking (Byrne & Anderson, 1998; Byrne & 
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Anderson, in press). Beyond that, however, is the larger promise of ACT-R/PM: that of a full-

fledged cognitive architecture along with sophisticated perceptual-motor machinery. 

Probably the best demonstration to date of the power of this union comes from Ehret 

(1999).  Among other things, Ehret developed an ACT-R/PM model of a fairly simple, but 

subtle, experiment. In that experiment, subjects were shown a target color, and asked to click on 

a button that would yield that color. The buttons themselves had four types: blank, arbitrary icon, 

text label, and color. In the color condition, the task was simple: users just found the color that 

matched the target, then clicked the button. In the text label condition, the task was only slightly 

more difficult: users could read the labels on the buttons, and select the correct one because the 

description matched the color. In the arbitrary icon condition, more or less random pictures 

appeared on each icon (e.g. a mailbox). Users had to either memorize the picture to color 

mapping, which they had to discover by trial and error, or memorize the location of each color, 

since the buttons did not change their function over time. The hardest condition, the blank 

condition, users simply had to memorize the mapping between button location and color, which 

they had to discover through trial and error. After performing the task for some time, all the 

labeling was removed. Not surprisingly, the amount of disruption was different in the different 

conditions, reflecting the amount of incidental location learning that went on as subjects 

performed the task.

The ACT-R/PM model that Ehret constructed did an excellent job of explaining the 

results. The model, through ACT-R’s associative learning mechanisms, also learned the 

mappings over time, and learned them about as well as the users, and suffered very similar 

disruptions. This was not only a clever experiment and modeling exercise, it also demonstrated 

the power of pairing a perceptual-motor system with a cognitive architecture having 

connectionist-style subsymbolic learning mechanisms. EPIC includes no learning mechanisms, 

and thus could not model these results. It is unclear how a hybrid like EPIC-Soar (Chong, 1998) 

would fare, as this kind of incidental and continuous association learning seems much more 

naturally suited to ACT-R’s learning mechanisms.

The ACT-R/PM menu models use a different kind of learning than Ehret’s location 

learning model, and the reasons for this will be described shortly. First, however, there is the 
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issue of representation. One of the problems with the original ACT-R visual interface model was 

the feature set employed. This set assumes that characters are LED-style, e.g. an “E” would be 

represented by several  line segments, as in Figure 12, and that the visual system was sensitive to 

each of the line segments. This is also the default in ACT-R/PM. However, the characters used in 

the experiment were presented in a much more standard typeface (Courier), which includes 

curvature and strong diagonals and does not break up the line segments.

--------- insert Figure 12 about here ----------

Alternative feature sets were employed,  including a letter feature set generated by 

Gibson (1969) and one from Briggs and Hocevar (1975). Given the strategy of the ACT-R 

Visual Interface module and all the default timing parameters in ACT-R/PM, it turned out the 

various feature sets were in fact all approximately equivalent. All the ACT-R/PM models 

described in this paper make use of the Briggs and Hocevar (1975) feature set, which was 

extended to include digits.

4.1 The EPIC-Inspired Model

Instead of employing a global strategy like the original ACT-R model or the EPIC model, 

a model was constructed with multiple options at the level of each saccade. In this model, the 

task is divided into two phases, which includes the initial saccade and all other saccades. The 

reason for considering the initial saccade separately is that some protocols show users beginning 

(and even occasionally completing) the first saccade before even clicking on the button which 

opens the menu. In this case, users clearly are not sensitive to the features of the characters, 

because they cannot yet see the characters. This saccade is also clearly not sensitive to the length 

of the menu, because they cannot yet tell how long the menu is. In light of this, the initial 

saccade was controlled by five productions, each of which simply directed attention to one of the 

first five locations. All five productions were allowed to compete on each trial.

For all subsequent saccades, two productions were in competition. These two productions 

represented two local strategies: move down to the nearest unseen character with a feature 

match, and move to any random unseen character. Thus, this model is much like the EPIC 
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model, except the decisions are made at the local (saccade) level, rather than the global (trial) 

level. The two productions can be described as:

DOWN-NEAREST-HIT

IF the goal is to find a target that has feature F
and there is an unattended object below the current location with feature F

THEN move attention to that location

LOOK-ANYWHERE

IF the goal is to find a target
and there is an unattended object anywhere

THEN move attention to that location

There is also a third production that fires when the target is found which is essentially the 

same as the FOUND-TARGET production in the ACT-R Visual Interface model.

Before presenting the results of this model, some discussion of conflict resolution in 

ACT-R is required. When multiple productions have their condition satisfied, ACT-R needs to 

make a decision about which one to fire. This decision is based on a “rational analysis” 

(Anderson, 1990) of costs and benefits. Each production has an expected value, E, which is 

computed based on the formula PG - C. P is the estimated probability that if the production fires, 

the goal matched in the production will be satisfied. G is the value of the goal, which is by 

default 20. C is the cost, in terms of time, of reaching the goal. By default, each production will 

have the same PG - C value, but this can change through learning.

ACT-R also includes some degree of stochasticity. On each cycle, the PG - C value is 

perturbed with noise that has a mean of zero and is distributed logistically. The probability that 

production i will be selected on a particular cycle is a function of its expected gain Ei, according 

to the following equation:

p i
e

e

E t

E t

j

i

j
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/
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where t is a positive linear function of the standard deviation, σ, of the noise. For more details, 

see Anderson and Lebiere (1998). t is thus a free parameter in the model, but the model’s 

behavior is relatively stable across variations in this parameter, particularly when this parameter 

is constant for both learning and execution. The model’s predictions do not critically depend on 

particular values for this parameter as long as it is non-zero. A more or less arbitrary value of t 

(0.141) was chosen for all models presented here.

In this particular model, since all productions in competition will have the same expected 

gain, then they will all effectively have equal probability. Thus, each one of the five productions 

that compete for the first fixation should fire about 20% of the time, and each of the two 

productions in competition thereafter should fire 50% of the time. These ratios are not free 

parameters, they represent ACT-R’s default behavior.

--------- insert Figure 13 about here ----------

Results of running the EPIC-Inspired model are presented in Figures 13 and 14. A 

histogram for the initial saccade was omitted because it is uninteresting—it is essentially a flat 

graph with positions 1-5 each getting very close to 20%. Overall the model does a poor job of 

accounting for the data. The average absolute error for response time is 24.38% and the average 

absolute error for number of fixations is 22.80%. However, the pattern of saccades, while not in 

an absolute sense a great fit, is qualitatively much closer than the previous ACT-R or EPIC 

models. Like the actual data, the mode for both middle and final fixations is 1 position down the 

menu and the positive side of each distribution is somewhat heavier than the negative side.

--------- insert Figure 14 about here ----------

A quantitative look at the saccade predictions versus the data supports this analysis. Since 

many of the actual data points are at or near zero, average absolute error percentage is not a good 

metric for fit. R-squared will be used instead. The r-squared for the model is 0.82 for the initial 

saccade, 0.83 for the middle saccades, and 0.65 for the final saccade. While the fit, particularly to 

the reaction time data, is not exceptional, at the level of control of individual saccades, this in an 

improved model. Clearly, something resembling a random component is important in capturing 

the saccade data.
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However, this model makes use of the default conflict resolution parameters. With the 

default parameters, when both the DOWN-NEAREST-HIT and LOOK-ANYWHERE 

productions match, each one has an approximately equal probability of firing, as do each of the 

five productions which determine the destination of the first saccade. It is entirely likely that 

these productions are not always equally good, and thus uniform firing probabilities may not be 

optimal.

ACT-R has the ability to learn the parameters that control conflict resolution; two of the 

three parameters in PG - C are decomposable and can change over time if learning is enabled in 

ACT-R. P, the probability of success, is the product of two other quantities, q and r. q is the 

probability that the production, if selected in conflict resolution, will fire successfully. 

Productions fail when they attempt to retrieve a chunk from declarative memory that are below 

the activation threshold. Because this model never attempts such a retrieval, q is always 

estimated by the system as 1.0. r is ACT-R’s estimate of the probability that if the production 

fires, the goal will eventually be popped successfully. Because no matter which production is 

selected, the model eventually does still find the target, r is also stable at 1.0. Thus, P is always 

1.0 for this model.

C, however, does not stay constant. C is decomposed into two parameters, a and b, which 

are summed to form C, the estimated total cost (in time). a is the time that the production itself 

takes to fire. The default time for a production is 50 ms, plus the time taken for any retrievals 

from declarative memory. Again, because this model does not make any retrievals from 

declarative memory, the a parameter for all the productions in this model does not change. On 

the other hand, b is the estimated total time after the production fires until the goal is popped, and 

does get learned by this model. This is the “downstream” cost of a production firing, and should 

generate within the model a preference for productions which minimize the estimated 

downstream cost.

--------- insert Figure 15 about here ----------

Figure 15 presents ACT-R’s estimate of b for each of the initial saccade productions over 

5,000 trials. On each of the 5,000 trials, each aspect of the trial was randomly selected: menu 

length, target position, target type (digit or letter), and distractor type (digit or letter), so the 
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environment was similar to the one experienced by the users in Byrne, et al. (1999). Notice the 

rapid divergence at early trials, then the convergence around 800, then a slow divergence. The 

ATTEND-FIRST-POSITION production is eventually preferred (lowest curve), but this 

preference is not clear until after 3,000 trials or so. 

The final values of b for each production, and the probability of selection according to 

Equation 2 that value represents, are presented in Table 3 (lower values of b mean lower cost, 

and therefore higher expectation value and thus higher probability of being selected). The model 

learns to favor productions that move shorter distances down the menu on the initial saccade, and 

this improves the fit of the model to the initial saccade data (r-squared 0.89), though the model’s 

mode is still not correct.

--------- insert Figure 16 about here ----------

The model also learns to prefer the DOWN-NEAREST-HIT production over the LOOK-

ANYWHERE production. Figure 16 presents the learning curve over the first 2,000 learning 

trials; the remaining trials are fairly stable. The final b for DOWN-NEAREST-HIT after 5,000 

trials was 1.412, for LOOK-ANYWHERE it was 1.509. When both are competing in conflict 

resolution, DOWN-NEAREST-HIT should fire 66.5% of the time, and LOOK-ANYWHERE the 

remaining 33.5% of the time. The distribution of the middle saccades of the model, which is 

presented in Figure 17a, is a slightly worse fit, from an r-squared of 0.83 to 0.81. The distribution 

of final saccades is presented in Figure 17b, and the fit again is not exceptional with an r-squared 

of only 0.62.

--------- insert Figure 17 about here ----------

The small changes in fit quality for the saccade distributions were accompanied by a 

small improvement to the overall reaction time data and the number of fixations. The fit to the 

reaction time and fixation data is presented in Figure 18. These fits are still relatively poor 

overall (average absolute error for RT data is 21.27%, and 21.28% for the number of fixations), 

particularly with targets near the top of the menu. This is because the model is unlikely to reverse 

itself if the target is high on the menu and it is initially skipped. On the other hand, this is more 

or less a zero-parameter fit. 

--------- insert Figure 18 about here ----------
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So, while learning does make a small improvement to the performance of the model, the 

gains are not large, and the overall fit of the model is still not particularly good. However, the 

content of the two productions in the model is somewhat odd. The DOWN-NEAREST-HIT 

production specifies three constraints on the next item fixated: it must have greater serial position 

than the current item, it must contain the feature randomly selected at the beginning of the trial,  

and it must be the nearest (if multiple items match the first two). The competing production, 

LOOK-ANYWHERE, has no constraints of any kind. This is not much of an exploration of the 

possible strategy space. The next model is an attempt to more thoroughly examine that space.

4.2 The Inclusive Model

As mentioned, the two productions in the previous model  are strikingly different. 

DOWN-NEAREST-HIT includes three constraints: direction, distance, and feature match. 

LOOK-ANYWHERE includes no constraints. These are the only two productions allowed to 

compete. However, there are productions that fall in between these two levels of constraint. This 

raises an obvious question: what happens when a more complete set of productions is included?

Just such a model was constructed. Besides the five productions which control the initial 

saccade, which were identical to those used in the EPIC-Inspired model, this model contains 

productions which range in their constraints from the three included in DOWN-NEAREST-HIT 

to the zero in LOOK-ANYWHERE. There are three constraints, direction, distance, and feature 

match, each of which could be enforced or ignored by each production. Thus, there are 23, or 

eight, productions. These eight productions are:

• DOWN-NEAREST-HIT, which is identical to the production in the previous two 

models.

• DOWN-NEAREST, which saccades to the previously-unseen item on the menu which 

is below the current item and nearest, but ignores whether or not the item is a feature match.

• DOWN-ANY-HIT, which saccades down the menu, and all previously-unseen items 

with a feature match are equally likely to be selected.

• DOWN-ANYWHERE, which will randomly select any previously-unseen item below 
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the current item.

• ANY-NEAREST-HIT, which will saccade to a random previously-unseen item with a 

feature match in either direction, but will prefer the one nearest to the current item.

• ANY-NEAREST, which will saccade to the nearest previously-unseen item. If there is a 

tie, then the choice will be random.

• ANY-HIT, which will randomly saccade to any previously-unseen item with a feature 

match.

• ANYWHERE, which is identical to the LOOK-ANYWHERE production in the 

previous model.

The goal was to give the model a large strategy space, and then rather than attempt to 

tweak the preferences for various productions by hand to maximize fit, allow the model to learn 

the preferences itself. The ACT-R defaults for each production will be a b of 1.0, so they will 

initially all have equal probability of firing in any situation in which they all match. As it turns 

out, the default behavior of this model is actually not bad. The before-learning fit to the reaction 

time and fixation data is presented in Figure 19. The average absolute error for response time is 

17.86%, with no fit parameters. The model is  too slow at short target locations, but otherwise 

not exceptionally poor. The fit to the number of fixation data is also quite good for a zero-

parameter fit. The average absolute error is again within 20%, at 14.46%.

--------- insert Figure 19 about here ----------

 Fit to the saccade distributions is not quite as good. Again, the model generates an 

approximately uniform distribution across locations 1 through 5 for the initial saccade, and like 

the EPIC-Inspired model this generates an r-squared of model to data of 0.82. Fits to middle and 

last saccades, however, are not as encouraging. The model’s saccade behavior is presented in 

Figure 20. The fits here generate r-squareds of 0.68 for middle saccades and 0.79 for final 

saccades. Thus, while the default behavior of the model is somewhat reasonable in terms of 

response time and number of fixations made, those fixations do not appear to be distributed 

correctly. In particular, the mode of 1 is far too dominant for the middle saccades.

--------- insert Figure 20 about here ----------

The Inclusive model was run through 5,000 learning trials which were randomized in the 
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same fashion as the learning trials used in the EPIC-Inspired model. Figure 21 presents the 

learning curve for the five productions which participate in conflict resolution for the first 

saccade. Again, the curves initially diverge, then re-converge around 1,000 trials, then diverge 

and fluctuate thereafter, with no production clearly favored. The most favored production after 

5,000 trials targets the first item and should fire 21.9% of the time, while the least favored 

production is the one which targets the second item, which should fire 18.0% of the time. Overall 

the model develops very little in the way of preference for the initial production, and in fact the 

fit to the empirical data is slightly worse (r-squared of 0.76). 

--------- insert Figure 21 about here ----------

Learning data for the eight productions which control search after that point are presented 

in Figure 22. Here the model clearly develops fairly decisive preferences. b values at the end of 

the 5000 trials, and the probabilities they should generate when all eight productions compete, 

are presented in Table 4. One of the most striking trends in the learning data is the clear 

preference the model generates for productions which specify a feature match. The four 

productions which specify a feature match are clearly preferred to the four that do not. However, 

the model does not learn that the less-restrictive productions are useless, in fact, the model will 

fire one of these four productions approximately a quarter of the time (26.4%). 

--------- insert Figure 22 about here ----------

The second preference that is clear is the preference for the ANY-* productions over the 

DOWN-* productions. The ANY-* productions are the model’s only way to back up if a 

DOWN-* production overshoots, and are flexible in that they can lead either up or down the 

menu, so this preference is not wholly surprising. However, given that the EPIC-Inspired model 

developed a preference for DOWN-NEAREST-HIT, this might be regarded as at least somewhat 

surprising. The effect of the *-HIT appears to override other preferences.  The third preference 

exhibited by the model, though only a mild preference, is for productions which specify 

NEAREST. The model learns to favor short saccades. The reason for this is not entirely clear.

Interestingly, if the only production in the model was the one that was preferred overall, 

ANY-NEAREST-HIT, the model would effectively behave like the original ACT-R visual 

interface model, because the only unexplored hits would always be down the menu, since the 
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search begins at the top. However, in the context of the other productions, this is not the behavior 

this production generates. The behavior of an ACT-R model, particularly one which learns, is 

dependent not only on the most favored production, but the other productions involved in the 

competition.

Clearly, learning did influence the behavior of the model. The question, however, is 

whether or not this learning made the model behave more like the users. Overall, it appears that 

it did. The fit of the Inclusive model after learning to the reaction time and fixation data is 

presented in Figure 23. While the model is still too slow for some target positions, particularly 

positions 2 and 3, the overall fit is better. The average absolute error has been reduced to 

12.96%, which represents a reduction of about one-third. This is a clear improvement. The model 

again produces something of a Nilsen effect, though it is still much less pronounced that the 

actual data.

--------- insert Figure 23 about here ----------

However, in other areas the model has not improved the fit. Consider the number of 

fixations generated by the model vs. those performed by the users. The average absolute error 

has risen to 16.77%, which is not bad but is worse than the pre-learning version of the model. 

This model clearly makes too few fixations, particularly for targets with high serial positions. 

This is probably due to the model’s reliance on feature guidance—the model is still probably 

more sensitive to feature guidance than users are. 

On the other hand, the fit to the distribution of saccades for the middle and last saccades 

is much improved, particularly the middle saccades. Distributions for the middle and last 

saccades are presented in Figure 24. The r-squared has risen from 0.68 to 0.84 for the middle 

saccades, primarily due to the reduction in the modal value. The mode is still 1, but the 

frequency of the mode after learning is much closer to observed frequency. The improvement in 

the distribution of final saccades is not as impressive, but the r-squared did rise from 0.79 to 

0.84. Overall, the fit of the Inclusive model after learning does appear to be better than the fit  

prior to learning, but there are some costs as well.

--------- insert Figure 24 about here ----------

The key to the relative success of this model is the focus on local rather than global 
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strategies. The eye-tracking data certainly suggests that users do not follow global strategies 

from trial to trial, or even within a trial. Instead, local decision-making appears to dominate. 

ACT-R/PM is well-suited to modeling decision-making at that level, and this made the modeling 

relatively straightforward. The apparently complex strategy adopted by the model is, in fact, a 

relatively simple set of preferences among the possible choices in a strategy space. This strategy 

space may not entirely exhaust all the possible local decision options, but it does give a sense of 

the way ACT-R learns preferences within such a strategy space. 

5. General Discussion

The fit of the final model is not perfect. However, the fit is good considering that no 

parameters were changed in order to optimize the fit of the model; these fits are essentially zero-

parameter predictions based on the system defaults for both timing parameters and learning 

functions. This is also more than just a simple fit to reaction time data; it is a fit of the observed 

distribution of eye movements as well. Given the amount of constraint imposed by the rich eye-

tracking data and the absence of parameter fitting, this represents an important step forward in 

our ability to model rapid tasks. This model is surely not a perfect model of the task and does not 

necessarily invalidate other models, but it suggests that there is great power in considering tasks 

like this as being driven by local rather than global strategies, and that learning plays a role in the 

development of those strategies. Furthermore, while this exact task is not likely to appear in 

many real-world task environments, tasks which require searching more or less arbitrary displays 

for more or less arbitrary items are certainly common. 

An additional advantage of the ACT-R/PM approach employed here is the avoidance of 

free parameters. ACT-R/PM’s default parameters have performed well in other contexts (e.g. 

Byrne & Anderson, 1998, in press; Ehret, 1999; Gray, Scholles, & Fu, 2000), and no numerical 

parameters were manipulated in order to optimize the fit between model and data. This is in 

contrast with the EPIC model of the original Nilsen data, which manipulated two such 

parameters (proportion of trials on which three items could be foveated and proportion of trials 

using systematic vs. random search). Of course, in constructing production rule models, the 
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modeler does have a certain amount of freedom in the model selection process itself. The current 

paper is an attempt to document a progression through this model-selection process, and the final 

model is a result not just of the production rules included in the model, but also of ACT-R’s 

learning mechanisms. The learning mechanisms limit the impact of arbitrary inclusion of 

productions, since the model can effectively “weed out” ineffective strategies. 

This is not to say all the issues  have been resolved. This model employs a strategy for 

mouse control that is essentially identical to the one employed by the EPIC model, that is, no 

mouse movement is initiated until the target character is found. This is simply not the strategy 

employed by all users at all times. While this strategy did seem to be the dominant choice for 

some users, it certainly was not for others. Mouse control may well be the source of the model’s 

slowness for targets at position 2 and 3 and might explain the size of the Nilsen effect in these 

data. With longer menus, both in terms of number of items and distance for the mouse to travel, 

users may have been more inclined to make an early mouse movement, which would then 

overshoot the target and require additional time to correct. The current models do not reflect 

differences in mouse control strategies.

Another issue to consider is the learning environment. The model learned in an 

environment that closely mimicked the one experienced by users in the experiment, but this is 

almost certainly not the same as the environments in which most people generally do most of 

their visual searches. In particular, the largest set size employed was only 12 items. Part of the 

Nilsen effect may be due to an learning environment which includes many longer searches, and 

thus the preference for making saccades further down the menu may be underestimated by the 

current model.

There are other issues as well. The selection and predictiveness of the feature set used to 

represent the letters almost certainly has some impact on the performance of the model, but 

exactly how much and which feature set is the “right” one is still unclear. A detailed discussion 

of this issue is beyond the scope of this paper, but several feature sets have been explored with 

surprisingly little overall impact on model performance. Reasons for this are not entirely 

obvious, but it appears that most of the feature sets that have been used in the psychology 

literature are based on character discrimination, not character search, and this may explain why 
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the feature sets seem somewhat too powerful. The number of unresolved issues with respect to 

vision and visual search is large, however, and this is merely one of many questions that remain 

unanswered. 

However, ACT-R/PM provides an excellent tool for exploring such issues. The ETA 

decomposition, paired with a sophisticated modeling system such as ACT-R/PM, should allow 

detailed analysis of interactive systems that are much more demanding than simple menu 

selection, such as military command and control, civilian air traffic control, in-vehicle navigation 

systems, emergency rooms, wearable computers in high-performance tasks, unmanned piloting, 

and so on. The range of potential applications is tremendous, and until recently computational 

tools have been ill-equipped to meet such challenges. The emergence of systems like ACT-R/PM 

and EPIC-Soar provide a sound basis on which to pursue questions, both theoretical and 

practical, about the coordination of cognition, perception, and action in interactive tasks and how 

that coordination develops over time.

ACT-R/PM for HCI

40



References

Agre, P. E., & Rosenschein, S. J. (Eds.). (1996). Computational theories of interaction and 

agency. Cambridge, MA: MIT Press.

Anderson, J. R. (1983). The architecture of cognition. Mahwah, NJ, USA: Lawrence Erlbaum.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An integrated theory of list 

memory. Journal of Memory and Language, 38, 341–380.

Anderson, J. R., & Lebiere, C. (1998) The atomic components of thought. Mahwah, NJ: 

Lawrence Erlbaum.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition 

and its relation to visual attention. Human-Computer Interaction, 12, 439–462.

Anderson, J. R., Matessa, M., & Lebiere, C. (1998). The visual interface. In J. R. Anderson & C. 

Lebiere (Eds.) The atomic components of thought (pp. 143–168). Mahwah, NJ: Lawrence 

Erlbaum.

Anderson, J. R., & Reder (1999). The fan effect: New results and new theories. Journal of 

Experimental Psychology: General, 128, 186-197.

Briggs, R., & Hocevar, D. J. (1975). A new distinctive feature theory for upper case letters. 

Journal of General Psychology, 93(1), 87-93.

Byrne, M. D., & Anderson, J. R. (1998). Perception and Action. In J. R. Anderson & C. Lebiere 

(Eds.) The atomic components of thought (pp. 167–200). Mahwah, NJ: Lawrence 

Erlbaum.

Byrne, M. D., & Anderson, J. R. (in press). Serial modules in parallel: The psychological 

refractory period and perfect time-sharing. To appear in Psychological Review.

ACT-R/PM for HCI

41



Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa, M. (1999). Eye tracking the visual 

search of click-down menus. Human Factors in Computing Systems: Proceedings of CHI 

99, 402-409. Reading, MA: Addison Wesley.

Byrne, M. D., & Bovair, S. (1997). A working memory model of a common procedural error. 

Cognitive Science, 21(1), 31-61.

Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. 

Hillsdale, NJ: Erlbaum.

Chong, R. S. (1998). Modeling Dual-Task Performance Improvement:Casting Executive Process 

Knowledge Acquisition as Strategy Refinement. Doctoral dissertation, University of 

Michigan, Ann Arbor, MI.

Coeffe, C., & O'Regan, J. K. (1987). Reducing the influence of non-target stimuli on saccade 

accuracy: Predictability and latency effects. Vision Research, 27(2), 227-240.

Cohen, P. R., Greenberg, M. L., Hart, D. M., & Howe, A. E. (1989). Trial by fire: Understanding 

the design requirements for agents in complex environments. AI Magazine, 10(3), 32-48.

Ehret, B. D. (1999). Learning Where to Look: The Acquisition of Location Knowledge in 

Display-Based Interaction. Doctoral dissertation, George Mason University, Fairfax, VA.

Findlay, J. M. (1982). Global visual processing for saccadic eye movements. Vision Research, 

22(8), 1033-1045.

Findlay, J. M. (1997). Saccade target selection in visual search. Vision Research, 37, 617-631.

Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Meredith.

Gray, W. D. (2000). The nature and processing of errors in interactive behavior. Cognitive 

Science, 24, 205–248.

Gray, W. D., & Altmann, E. M. (in press). Cognitive modeling and human-computer interaction. 

In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors. 

New York: Taylor & Francis, Ltd.

ACT-R/PM for HCI

42



Gray, W. D., Schoelles, M. J., & Fu, W.-T. (2000). Modeling a continuous dynamic task. Paper 

presented at the Third International Conference on Cognitive Modeling, Groningen, 

Netherlands.

Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling reveals menu search is both random 

and systematic. In Human Factors in Computing Systems: Proceedings of CHI 97 (pp. 

107–114). New York: ACM Press.

John, B. E. and D. E. Kieras (1996). The GOMS family of user interface analysis techniques: 

Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3, 320-

351.

Kieras, D. E., & Meyer, D. E. (1996). The EPIC architecture: Principles of operation. 

Unpublished manuscript from ftp://ftp.eecs.umich.edu/ people/kieras/EPICarch.ps

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and 

performance with application to human-computer interaction. Human-Computer 

Interaction, 12, 391–438.

Landauer, T. K. (1995). The trouble with computers: Usefulness, usability, and productivity. 

Cambridge, MA: MIT Press.

MacKenzie, I. S. (1992). Fitts’ Law as a research and design tool in human-computer interaction. 

Human-Computer Interaction, 7, 91–139.

Motter, B. C., & Belky, E. J. (1998a). The zone of focal attention during active visual search. 

Vision Research, 38(7), 1007-1022.

Motter, B. C., & Belky, E. J. (1998b). The guidance of eye movements during active visual 

search. Vision Research, 38(12), 1805-1815.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Nielsen, J. (1997). How Users Read on the Web. http://www.useit.com/alertbox/9710a.html

ACT-R/PM for HCI

43



Nilsen, E. L. (1991). Perceptual-motor control in human-computer interaction (Technical Report 

Number 37). Ann Arbor, MI: The Cognitive Science and Machine Intelligence 

Laboratory, the University of Michigan.

Norman, K. L. (1991). The Psychology of Menu Selection: Designing Cognitive Control of the 

Human/Computer Interface. Norwood, NJ: Ablex.

Pylyshyn, Z. (1999). Is vision continuous with cognition? The case of impenetrability of visual 

perception. Behavioral & Brain Sciences, 22, 341-423.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Cognitive models as users. ACM 

Transactions on Computer-Human Interaction, 7, 141-173.

Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and 

extent. Journal of Experimental Psychology: General, 190, 475-495.

Rosenbaum, D. A. (1991). Human motor control. New York: Academic Press.

Shen, J., & Reingold, E. M. (1999). Saccadic selectivity during visual search: The effects of 

shape and stimulus familiarity. In M. Hahn & S. C. Stoness (Eds.), Twenty First Annual 

Conference of the Cognitive Science Society (pp. 649-652). Mahwah, NJ: Erlbaum.

Tauscher, L., & Greenberg, S. (1997). How people revisit Web pages: Empirical findings and 

implications for the design of history systems. International Journal of Human-Computer 

Studies, 47,  97–137 

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive 

Psychology, 12(1), 97-136.

Welford, A. T. (1968). Fundamentals of skill. London: Methuen.

Zelinsky, G. J., & Sheinberg, D. L. (1997). Eye movements during parallel-serial visual search. 

Journal of Experimental Psychology: Human Perception & Performance, 23(1), 244-262.

ACT-R/PM for HCI

44



Zettlemoyer, L. S., St. Amant, R. (1999). A visual medium for programmatic control of 

interactive applications. Human Factors in Computing Systems: Proceedings of CHI 99, 

199–206. Reading, MA: Addison-Wesley. 

ACT-R/PM for HCI

45



Author Note

Michael D. Byrne, Department of Psychology.

I would like to thank John Anderson for his extensive contributions to this work and 

Wayne Gray for discussions about the ETA triad. Portions of this research was supported by the 

National Science Foundation (NSF SBR 94-21332), the Office of Naval Research (ONR 

N00014-96-I-0491), and the National Institute of Mental Health (NIMH 2732-MH19102) while 

the author was at Carnegie Mellon University.

Correspondence concerning this article should be addressed to Michael D. Byrne, 

Department of Psychology, Rice University MS-25, 6100 Main Street, Houston, Texas, 77005-

1892. Electronic mail may be sent to byrne@acm.org.

ACT-R/PM for HCI

46



Table 1. ACT-R/PM main system parameters (not including Audition and Speech)

Parameter Module Value
Burst time Motor 50 msec
Feature preparation time, per feature Motor 50 msec
Fitts' coefficient for Peck Motor 75 msec/bit
Fitts' coefficient, mouse movement Motor 100 msec/bit
Minimum aimed movement time Motor 100 msec
Attention shift latency Vision 135 msec
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Table 2. Proportion of initial saccades of each distance, observed and predicted by the ACT-R 

visual interface model (Anderson, Matessa, & Lebiere, 1997) and the EPIC model (Hornof & 

Kieras, 1997).

Distance Observed ACT-R EPIC
1 0.182 0.440 0.310
2 0.239 0.246 0.310
3 0.264 0.138 0.060
4 0.190 0.077 0.060
5 0.079 0.043 0.060
6 0.025 0.024 0.060
7 0.010 0.014 0.049
8 0.005 0.008 0.049
9 0.003 0.004 0.049
10 0.001 0.002 0.042
11 0.001 0.001 0.042
12 0.000 0.001 0.042
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Table 3. Final b values for the five productions which compete for control of the initial saccade 

in the EPIC-Inspired model after 5000 learning trials.

Production Name b-value Probability
attend-first-position 1.5989 0.256
attend-second-position 1.6267 0.210
attend-third-position 1.6271 0.210
attend-fourth-position 1.6412 0.190
attend-fifth-position 1.6909 0.134
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Table 4. Final b values for the eight productions which compete for control of after the initial 

saccade in the Inclusive model after 5000 learning trials.

Production Name b-value Probability
down-nearest-hit 1.3868 0.143
down-any-hit 1.3954 0.135
down-nearest 1.5300 0.052
down-anywhere 1.4959 0.066
any-nearest-hit 1.3170 0.234
any-hit 1.3230 0.225
nearest 1.4789 0.075
anywhere 1.4857 0.071
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Figure Captions

Figure 1. The Embodied Cognition-Task-Artifact triad. 

Figure 2. ACT-R/PM system diagram.

Figure 3.  Flow of information in the ACT-R production system. After Figure 1.2 in Anderson 

and Lebiere (1998).

Figure 4. Flow of information in the Vision Module.

Figure 5. Procedure in the Nilsen menu experiment. 

Figure 6. Results of the Nilsen experiment. The dotted curve underneath the data represents the 

movement time as predicted by Fitts’ Law.

Figure 7. The two strategies in the EPIC model. Panel (a) describes the systematic strategy, and 

panel (b) presents the random strategy. Based on Hornof and Kieras (1997).

Figure 8. Example menu used in the Byrne, et al. (1999) eye-tracking experiment.

Figure 9. Response time of subjects (panel a) and number of fixations of subjects (panel b) as a 

function of menu length and target position in the eye-tracking experiment.

Figure 10. Histogram for the distribution of the initial saccade. Item 1 represents the top menu 

item.

Figure 11. Histograms for the distribution of middle saccades (panel a) and final saccades (panel 

b). Positive numbers represent the top-to-bottom direction, negative numbers the bottom-

to-top direction.

Figure 12. Representation of the letter “E” in the default feature set used by the ACT-R Visual 

Interface.
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Figure 13. Fit of the EPIC-Inspired model to the empirical response time data (panel a) and 

fixation data (panel b). Filled points and solid lines represent the model,  open points and 

dashed lines the data. Vertical bars represent 95% confidence intervals.

Figure 14. Histogram of saccade distances for middle saccades (panel a) and final saccades 

(panel b) for the EPIC-Inspired model. The empirical distribution is indicated by the gray 

line and boxes.

Figure 15. Learning curve for the five productions which direct the initial saccade of the EPIC-

Inspired ACT-R/PM model.

Figure 16. Learning curves for the DOWN-NEAREST-HIT production (lower curve) and the 

LOOK-ANYWHERE production for the first 2000 learning trials in the EPIC-Inspired 

model.

Figure 17. Histogram of saccade distances for middle saccades (panel a) and final saccades 

(panel b) for the EPIC-Inspired model after 5000 learning trials. The empirical 

distribution is indicated by the gray line and boxes.

Figure 18. Fit of the EPIC-Inspired model to the empirical response time data (panel a) and 

fixation data (panel b) after 5000 learning trials. Filled points and solid lines represent the 

model,  open points and dashed lines the data. Vertical bars represent 95% confidence 

intervals.

Figure 19. Fit of the before-learning Inclusive model to the empirical response time data (panel 

a) and fixation data (panel b). Filled points and solid lines represent the model,  open 

points and dashed lines the data. Vertical bars represent 95% confidence intervals.

Figure 20. Histogram of saccade distances for middle saccades (panel a) and final saccades 

(panel b) for the Inclusive model, before learning. The empirical distribution is indicated 

by the gray line and boxes.

Figure 21. Learning curve for the five productions which direct the initial saccade of the 

Inclusive model.
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Figure 22. Learning curve for the eight productions which direct the search after the initial 

saccade for the Inclusive model.

Figure 23. Fit of the Inclusive model after 5000 learning trials to the empirical response time 

data (panel a) and fixation data (panel b). Filled points and solid lines represent the 

model,  open points and dashed lines the data. Vertical bars represent 95% confidence 

intervals.

Figure 24. Histogram of saccade distances for middle saccades (panel a) and final saccades 

(panel b) for the Inclusive model, before learning. The empirical distribution is indicated 

by the gray line and boxes.
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