Abstract

There is a critical gap in attempting to predict aviation system and human performance on taxiways. Large-scale computer simulations and human-in-the-loop experiments have historically been used to provide higher levels of performance. However, testing these algorithms is challenging due to the lack of a validated computational cognitive model to parallel human performance.

The present study attempts to bridge this gap by constructing and validating a computational cognitive model of taxiing, using ACT-R. The model has been validated against taxi position data recorded by real pilots at DFW airport and simulations of a C-17 at DFW airport (SODAA data). Preliminary comparisons already useful, but more comparisons needed.

Motivation

Surface traffic management is a critical concern for NextGen. Large-scale computer simulations can provide insight into sequencing, conflict resolution, and human-in-the-loop experiments. However, testing these algorithms is challenging because of the lack of a validated computational cognitive model to parallel human performance.

Approach

Construct computational cognitive models of pilots taxiing.

Methodology. Two phases:

I. Analyze and pilot prototypical data.

- Analyze and pilot prototypical data.
- Correlate with metrics.
- Analyze chart to see human error.
- What is the “expected” performance on these metrics?
- What is the “predicted” performance on these metrics?
- “Surprise” the human with results from the model performance?
- Evaluate capability and brief.

II. Validate the model.

- Validate the model against taxi position data recorded by real pilots at DFW airport and simulations of a C-17 at DFW airport (SODAA data).
- Preliminary comparisons already useful, but more comparisons needed.

Task Analysis

- Testability: if the model is used to be a “Turing test” for the model.

- Will use a second validation approach.

- Validate: SODAA Data

- Validation: SODAA Data

- Preliminary comparisons already useful.

- What criteria for those metrics?

- Do not know which trajectories are errors.

- Significant volume of data.

- Data for validation is frequently sparse.

- Not HITL simulation data, thus limiting fidelity concerns.

- Perhaps eventually, participate in large-scale NASA/FAA fast-track tests to validate the model.

- Inform database of pilot response time distributions.

- Replace human “pseudopilots” in HITL simulations of ground control.

- Possibly expand to other team members.

- Widen range of taxi tasks.

- More complete knowledge for off-nominal situations.

- Natural language communications with ground control.

- Better performance for off-nominal situations.

- More complete knowledge for off-nominal situations.

Future Directions and Applications

- Validate model

- Online taxi task complexity.

- Natural language communications with ground control.

- Full and all of the above.

- Different environment (e.g., LAX)

- Test in real time

- Test in real time

- Assist controllers

- Areal human taxi “autopilot” in HITL simulations of ground control

- Evaluate impact of changes in displays or other output format

- Cloud-based simulations

- Initial environments

Acknowledgments

The authors gratefully acknowledge the support of the National Aeronautics and Space Administration (NASA) for funding this research.

In preparation for next year's project, we plan to develop and validate a new model of taxiing.

A Human Performance Model of Commercial Jetliner Taxiing

Michael D. Byrne, Jeffrey C. Zemla

Department of Psychology

Rice University

byrne/acm.org, zemla@rice.edu

Alex Kilik, Kenyon Riddle

Department of Psychology

University of Illinois Urbana-Champaign

kilik@illinois.edu, riddle5@illinois.edu

Amy L. Alexander

Aptima, Inc.

(now with Lincoln Labs)

alexander@illinois.edu