

Processes influencing visual search efficiency in conjunctive search

A rational analysis approach

Clayton T. Stanley & Michael D. Byrne

Department of Psychology Rice University Houston, TX 77005 clayton.stanley@rice.edu byrne@rice.edu http://chil.rice.edu

Overview

- Problem
- Salience computation
- Methods
- Participant results
- ACT-R model
- Model results
- Comparison
- Discussion
- Closing remarks

Problem

- When deploying the eyes, how does the human visual system decide where to look next?
- Since its inception, the ACT-R visual system hasn't really addressed these issues
 - Currently doesn't handle bottom-up salience nor err on conjunctive searches
- Here is a first attempt to address such concerns

Salience Computation

Salience of feature *i* in the visual icon

- 16 subjects
- 4 possible rectangular targets
 - (Red, Green) color
 - (Horizontal, Vertical) orientation
- 2 target conditions
 - (Present, Absent)
- 21 manipulated cells
 - Alters relative frequency of the two types of conjunctive distractors as well as number of disjoint distractors
- 3 repetitions of each configuration
- 504 shuffled trials per run
- Number of objects
 - 36 for target absent condition; 1 additional when present (target doesn't replace an object)

Target Present (GV) Distract RV 15 Distract GH 9 Disjoint Distract RH 12

Target Absent (GH) Distract RH 3 Distract GV 15 Disjoint Distract RV 18

Target Present (GV) Distract RV 3 Distract GH 9 Disjoint Distract RH 24

Target Present (RV) Distract GV 3 Distract RH 3 Disjoint Distract GH 30

Target Absent (RH) Distract GH 21 Distract RV 3 Disjoint Distract GV 12

Search trial ex. e

11

		# same orientation distractors					
		3	9	15	21	27	33
# same color distractors	3	30 (d)	24	18	12 (e)	6	0
	9	24 (c)	18	12 (a)	6	0	-
	15	18 (b)	12	6	0	-	-
	21	12	6	0	-	-	-
	27	6	0	-	-	-	-
	33	0	-	-	-	-	-

 Hyphens represent cells that were not tested. Numbers within a cell indicate the number of disjoint distractors placed on the screen

Results

Hit responses

Correct rejection responses

Discussion

- Average miss & false alarm rates were .06 & .013 respectively
- Asymmetrical curves for hit & correct rejection responses
 - Two components
 - First, the shape of the curves
 - Strong quadratic component of trend for hit responses
 - Almost asymptotic for correct rejections
 - Next, the 'squishiness' of the curves
 - Evidence for strong serial search component in hit responses
 - Evidence non-existent for correct rejections
- Interpretation
 - Difficult looking only at these data without a strong understanding of the underlying processes involved

ACT-R Model

- Target rectangle encoded and placed in goal buffer
- +visual-location> requests cause model to find object with highest activation
 - Includes a slot only for target color
 - If object activation is greater than *salience-thresh*, chunk is placed in buffer; else nothing is returned
- If nothing is returned, model concludes that target is absent
 - Analogous to a memory retrieval failure
- If an object is returned and it is the target object, model concludes that target is present; else the model keeps looking
- If an object has been looked at, the object won't be looked at again

ACT-R Model Results

Hit responses

Model Fit: Hits

Participant data

Model Fit: Correct Rejections

Participant data

ACT-R data

Model Fit: r Scatter

Hit responses

Correct rejection responses

Model Fit: Incorrect Responses

- Miss responses
 - Salience threshold calibrated to match miss rate
 - Therefore consistent miss rate for ACT-R (.07) and participant (.06) data
- False alarms
 - Small (but non-zero) for participants (.013)
 - Not modeled with ACT-R currently

Discussion: Asymmetrical Shape

- Subjects utilizing color primarily to guide their search
 - High bottom-up activation percentage for color relative to orientation
 - Top-down guidance only for color
 - High ratio of top-down/bottom-up activation
 - However, a bit of bottom-up activation for orientation still necessary to produce the strong quadratic present in the hit responses

Discussion: Asymmetrical 'Squishiness'

- Hit responses
 - Disjoint distractors are not often attended (if ever); however, their presence acts to 'shadow' conjunctive distractors relative to the target
 - Causes more accurate target pinpointing when a high number of disjoint distractors are displayed
 - Works alongside serial search effects to separate level curves

Discussion: Asymmetrical 'Squishiness'

- Correct rejections
 - Subjects concluding 'target absent' by an analogous memory retrieval failure for the vision system
 - Disjoint distractors again not often attended; however, their presence acts to increase information content for conjunctive distractors
 - Assuming a constant threshold, may cause a higher proportion of conjunctive distractors searched before concluding 'target absent'
 - Works against serial search effects to overlap level curves
 - Overlapping may also be influenced by a strong tendency to search for color

Discussion: Future Predictions

- Modified experiment: remove disjoint distractors
- Predictions using previous hypotheses
 - Hit responses
 - Less efficient search overall
 - Level curves closer together (i.e., more overlap)
 - Correct rejections
 - Curious about the interaction between salience threshold and task
 - If threshold unaltered, search time should decrease (more prominently where larger numbers of disjoint distractors resided)

Closing Remarks

- Strengths of model
 - Good correlations with participant data
 - Produces asymmetrical results for hit/cr conditions present in data
 - Interpretation of parameters are enlightening and seem plausible for the task
- Weaknesses
 - Search times still a bit long even after decreasing 'visual -attention-latency' to 25ms
 - Areas where longer search times exist in ACT-R model are not exchanged with more accurate responses (i.e., miss rate higher than participant data in these areas)

Closing Remarks

- Model predictions
 - Although disjoint distractors are not highly salient, their presence may actually improve search efficiency for the task by causing more accurate target pinpointing when the target is present
 - When the target is absent, disjoint distractors increase the information content of conjunctive distractors, affecting the average time elapsed before terminating the search
 - Next experiment aimed to challenge these predictions
- Code for the salience computations which works with the new vision module is available @
 - http://chil.rice.edu/projects/salience/

Questions

Interpreting Results: Hit Responses

Interpreting Results: CR Responses

