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Abstract

We present a computational model of a closed-loop, pilot-

aircraft-visual scene-taxiway system created to shed light on

possible sources of taxi error. Creating the cognitive aspects of

the model using ACT-R required us to conduct studies with subject

matter experts to identify experiential adaptations pilots bring

to taxiing. Five decision strategies were found, ranging from

cognitively-intensive but precise, to fast, frugal but robust. We

provide evidence for the model by comparing its behavior to a

NASA Ames Research Center simulation of Chicago O’Hare surface

operations. Decision horizons were highly variable; the model

selected the most accurate strategy given time available. We

found a signature in the simulation data of the use of globally

robust heuristics to cope with short decision horizons as

revealed by errors occurring most frequently at atypical taxiway

geometries or clearance routes. These data provided empirical

support for the model.
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Using Computational Cognitive Modeling to Diagnose Possible

Sources of Aviation Error

The purpose of models is not to fit the data but to sharpen the

questions. (Samuel Karlin, 1983)

Aviation incident and accident investigations often find both

cognitive and environmental contributing factors to these events.

Environmental sources include such factors as flawed interface

design (e.g., Degani, Shafto & Kirlik, 1999), confusing

automation (e.g., Olson & Sarter, 2000), and unexpected weather

conditions (Wiegmann & Goh, 2001). Cognitive sources include such

factors as poor situation awareness (Endsley & Smolensky, 1998),

procedural non-compliance (Bisantz & Pritchett, in press), and

poor crew coordination (Foushee & Helmreich, 1988).

Many if not most significant incidents and accidents result

from some combination of both cognitive and environmental

factors. In fact, in a highly proceduralized domain such as

aviation, with highly trained and motivated crews, accidents

rarely result from either environmental or cognitive causes

alone. Training and experience are often sufficient to overcome

even the most confusing interface designs, and the environment is

often sufficiently redundant, reversible, and forgiving

(Connolly, 1999), so that most slips and errors have few serious

consequences. Most significant incidents and accidents result

when cognitive, environmental, and perhaps even other (e.g.,
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organizational) factors collectively conspire to produce disaster

(Reason, 1990).

For this reason, an increasing number of human factors and

aviation psychology researchers have realized that the common

terms “human error” and “pilot error” often paint a misleading

picture of error etiology (e.g., Hollnagel, 1998; Woods,

Johannesen, Cook, & Sarter, 1994). By their nature, these terms

predicate error as a property of a human or pilot, in contrast to

what has been learned about the systemic, multiply-caused, nature

of many operational errors. These often misleading terms only

contribute to the “train and blame” mindset still at work in many

operational settings, and perhaps contribute to the failure of

such interventions to improve the safety landscape in settings

from commercial aviation, to military operations, to medicine.

The Challenge Posed by the Systems View of Error

While advances in theory may well present a more enlightened,

systemic view of error, in our opinion one of the most

significant barriers to the development of human factors

interventions based on the systems view is the lack of techniques

and models capable of simultaneously representing the many

potential factors contributing to an ultimate error, and how

these factors interact in typically dynamic, often complex, and

usually probabilistic ways. To say that multiple contributing

factors “conspire together” to produce error is one thing. To

provide techniques capable of representing these multiple

factors, and the precise manner in which they “conspire” is quite
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another. This problem is difficult enough in the realm of

accident investigation, where at least some evidence trail is

available (Rasmussen, 1980; Wiegmann & Shappell, 1997). It is

significantly more challenging, and arguably even more important,

in the case of error prediction and mitigation (e.g., Hollnagel,

2000).

As a step toward addressing this problem, this article

describes the results of a study in which dynamic and integrated,

computational cognitive modeling, or more specifically, pilot-

aircraft-scene-taxiway modeling, was performed to shed light on

the possible sources of error in aviation surface operations,

more specifically, taxi navigation. Modeling consisted of

integrating a pilot model developed within the ACT-R cognitive

architecture (Anderson & Lebiere, 1998; Anderson, et al., in

press), a model of aircraft taxi dynamics, and models of both the

visible and navigable airport surface, including signage and

taxiways.

This modeling effort was motivated by experiments performed in

NASA Ames’ Advanced Concept Flight Simulator (for more detail,

see Hooey & Foyle, 2001; Hooey, Foyle & Andre, 2000).  The

purpose of the NASA experimentation was both to attempt to better

understand the sources of error in aviation surface operations,

and also to evaluate the potential of emerging display and

communication technologies for lowering the incidence of error

(Foyle et al., 1996).

The purpose of the cognitive system modeling research was to
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evaluate and extend the state-of-the-art in computational

cognitive modeling as a resource for human performance and error

prediction.

The Problem: Taxi Errors and Runway Incursions

Errors made during navigating on an airport surface have

potentially serious consequences, but this is not always the

case. Many such errors are detected and remedied by flight crews

themselves, others are detected and remedied by controllers, and

even many uncorrected errors still fail to result in serious

negative consequences due to the sometime-forgiving nature of the

overall, multi-agent, space that constitutes the modern taxi

surface. However, some errors in taxi navigation can result in

drastic consequences.

A particularly pernicious type of error is the runway

incursion, which is any occurrence involving an aircraft or other

object creating a collision hazard with another aircraft taking

off or landing, or intending to take of or land. Since 1972,

runway incursion accidents have claimed 719 lives and resulted in

the destruction of 20 aircraft (Jones, 2000). The problem of

runway incursion accidents continues to only get worse, despite

acknowledgement of the importance of the problem by both the FAA

and NTSB, and plans to remedy the problem with technologies such

as the Airport Movement Area Safety System (NTSB Reporter, 2003).

For example, the number of U.S. runway incursions in 1996, 1997,

and 1998, totaled 287, 315, and 325 respectively. In 1999, a KAL

airliner with 362 passengers swerved during takeoff at Chicago
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O’Hare (ORD), to avoid hitting a jet that entered the runway, and

an Iceland Air passenger jet at JFK came within 65 m of a cargo

jet that mistakenly entered the runway (Jones, 2000).

These problems show no immediate sign of going away. There

were a total of 337 U.S. runway incursions in 2002, more than 1.5

times the number reported a decade earlier. The NTSB Reporter

(2003) noted that “Despite FAA programs to reduce incursions,

there were 23 reported in January, 2003, compared with only 14 in

January 2002” (p. 15). Due in part to the inability to deal with

incursion problems to date, NASA established an Aviation System-

Wide Safety Program to address this and other challenges to

aviation safety. The NASA simulation and technology evaluation

study described in the following section represented one attempt

to use aviation psychology and human factors research techniques

to address critical challenges to aviation safety.

Simulation, Experimentation, and Data Collection

Called T-NASA2 (for more detail, see Hooey & Foyle, 2001;

Hooey, Foyle & Andre, 2000) throughout this article, the

experimental scenario required 18 flight crews, consisting of

active pilots from six commercial airlines, to approach, land,

and taxi to gate at Chicago O’Hare International Airport (ORD).

The flight crews had varying levels of experience with the ORD

surface configuration. Experimentation used baseline conditions

(current paper-chart technology only), as well as conditions in

which pilots were provided with various new display and

communication technologies, including a moving-map and head-up
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displays with virtual signage (e.g., a superimposed “STOP” sign

at a hold point). The modeling performed in this research was

focused solely on performance in the baseline (current

technology) conditions.

The T-NASA2 Data Set

Nine different taxiway routes were used in the baseline trials

of the T-NASA2 simulation. Each of the 18 crews were tested over

a balanced subset of 3 different routes for a total of 54 trials.

Each trial began approximately 12 nm out on a level approach into

ORD. Pilots performed an autoland, and the FO notified the

captain of their location with respect to the runway exit, on the

basis of clearance information obtained during the final stages

of flight and the paper airport diagram. As the aircraft cleared

the runway, the crew tuned the radio to ground controller

frequency and the controller provided a taxi clearance (set of

intersections and directions) from the current location to the

destination gate. Crews were then required to taxi to the gate in

simulated, visually impoverished conditions (RVR 1000’). Further

details can be found in Hooey and Foyle (2001). It should be

noted that the simulation did not represent all standard

operating procedures (after landing checklists, log and company

paperwork), nor all communication activities (with the cabin

crew, dispatch, and gate). As a result, the level of crew

workload was somewhat lower than a crew might experience in

operational conditions, lending support to the idea that the

experimental situation with respect to error was closer to “best-
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case” rather than “worst-case” conditions (other than low

visibility).

Across the 54 baseline T-NASA2 trials, a total of 12 off-route

navigation “major errors” were committed. Major errors were

defined as deviation of 50' feet or more from the centerline of

the cleared taxi route.  These major errors were used for the

modeling effort because they were objectively determined using

simulation data, and did not require subjective interpretation

for classification. On each, crews proceeded down an incorrect

route without any evidence of immediate awareness, or else

required correction by ground control. The T-NASA2 research team

designated these 12 to be “major errors.” Additionally, 14 other

deviations were observed but were detected and corrected by the

crews. These latter 14 deviations were thus classified as “minor

errors” by the NASA team, and we were instructed that the

modeling effort should focus solely on the major errors. NASA

provided our modeling team with descriptions of each major error,

in terms of intersection complexity, turn severity, and their own

classification of each in terms of planning, decision making, or

execution (Hooey & Foyle, 2001; Goodman; 2001)

Two aspects of the T-NASA2 data set provided the primary

motivation for the present modeling effort. First, it was

believed that modeling might shed light on the underlying causes

of the errors observed in the experimental simulations. A second

motivation was the fact that the suite of situation awareness and

navigation aids used in the new technology conditions of the T-
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NASA2 experiments were observed to eliminate navigation errors

almost entirely (Hooey & Foyle, 2001). Our research therefore had

as its goal to provide a systemic explanation for the errors that

were observed, in a fashion that was consistent with the finding

that no errors were observed when the quality of information

available to support navigating was improved.

ACT-R Modeling: A General Overview

ACT-R (Anderson & Lebiere, 1998; see also Anderson, et al., in

press) is a computational architecture designed to support

modeling of human cognition and performance at a detailed

temporal grain size. Figure 1 depicts the general system

architecture. ACT-R allows for modeling of the human-in-the-loop

as the output of the system is a time-stamped stream of behaviors

at a very low level, such as individual shifts of visual

attention, keystrokes, and primitive mental operations such as

retrieval of a simple fact. In order to produce this, ACT-R must

be provided two things: knowledge and a world or environment

(usually simulated) in which to operate. The environment must

dynamically respond to ACT-R’s outputs and thus must also often

be simulated at a high degree of fidelity. The knowledge that

must be provided to ACT-R to complete a model of a person in an

environment is essentially of two types: declarative and

procedural. Declarative knowledge, such as “George Washington was

the first president of the United States,” or “‘IAH’ stands for

Bush Intercontinental airport in Houston,” is represented in

symbolic structures known as chunks.
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Procedural, sometimes referred to as “how-to,” knowledge, such

as the knowledge of how to lower the landing gear in a 747, is

stored in symbolic structures known as production rules or simply

productions. These consist of IF-THEN pairs; IF a certain set of

conditions hold, THEN perform one or more actions. In addition,

both chunks and productions contain quantitative information that

represents the statistical history of that particular piece of

knowledge. For example, each chunk has associated with it a

quantity called activation that is based on the frequency and

recency of access to that particular chunk, as well as its

relationship to the current context. Because the actual

statistics are often not known, in many cases these values are

left at system defaults or estimated by the modeler, though in

principle ACT-R can learn them as well.

The basic operation of ACT-R is as follows. The state of the

system is represented in a set of buffers. The IF sides of all

productions are matched against the contents of those buffers. If

multiple productions match, a procedure called conflict

resolution is used to determine which production is allowed to

fire, or apply its THEN actions. This generally changes the state

of at least one buffer, and then this cycle is repeated every 50

ms of simulated time. In addition, a buffer can change without a

production explicitly changing it. For example, there is a buffer

that represents the visual object currently in the focus of

visual attention. If that object changes or disappears, this

buffer will change as a result. That is, the various perceptual



Using Computational Cognitive    12

and motor processes (and declarative memory as well) act in

parallel with each other and with the central cognitive

production cycle. These processes are modeled at varying levels

of fidelity. For example, ACT-R does not contain any advanced

machine vision component that would allow it to recognize objects

from analog light input. Rather, ACT-R needs to be given an

explicit description of the object to which it is attending.

ACT-R was originally designed to model the results of

cognitive psychology laboratory experiments, and is often

considered a “bottom up” or “first principles” approach to the

problem of modeling human cognition and performance. Whether or

not ACT-R scales up to more complex domains is an empirical

question, but so far it has done well in dynamic domains such as

driving (Salvucci, 2001), and we believe it is now mature enough

to be tested in aviation.

Constructing an ACT-R Model of Taxi Performance

Taxiing a commercial jetliner is obviously a complex task, and

the construction of an ACT-R model of a pilot performing this

task was similarly complex along multiple dimensions.

Model Scope

One of the first decisions that had to be made was a decision

about scope. In one sense, there are clearly multiple humans in

the taxi loop, even in the somewhat simplified NASA simulation.

These include the captain, who is actually head-up looking out

the window and actually controlling the aircraft, the first

officer (FO), who looks primarily head down and assisting both
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the captain and the ground-based controller. To limit the scope

of the project, we chose to model only the captain in ACT-R, and

treated both the ground controller and the FO as items in the

environment. We thought this decision was a good balance between

tractability and relevance, since the captain made the final

decisions and also controlled the aircraft.

A second, important aspect of scoping model coverage was to

select the psychological activities upon which we would focus our

efforts. Our research team was one of many teams also creating

cognitive models of the same, T-NASA2 data (e.g., see Deutsch &

Pew, 2002; Gore & Corker, 2002; Liebiere, Bielfeld, Archer,

Archer, Allender & Kelley, 2002; and McCarely, Wickens, Goh &

Horrey, 2002). In this light, we considered both the strengths

and weaknesses of our ACT-R approach with the alternative

approaches taken by other research teams, with the goal of

providing a unique contribution to the overall research effort.

For example, we ruled out focusing on multi-tasking, as ACT-R is

less mature in this area than some other models, and we ruled out

focusing on situation awareness (SA) issues (losing track of

one’s location on the airport surface), as this was less mature

in this area than some other models. All things considered,

including our own previous experience in human performance

modeling (e.g., Kirlik, 1998; Kirlik, Miller & Jagacinski, 1993),

we decided to focus on the interactive, dynamic decision making

aspects of the task in its closed-loop context. As a result, we

focused on those contributions to error that may result from the
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interaction of the structure of a task environment and the need

to make often-rapid decisions on the basis of imperfect

information, resulting from decay of clearance information from

memory, low visibility, and sluggish aircraft dynamics. Our focus

on decision making, which assumed pilots had accurate knowledge

of their current location, was complemented by another modeling

team's focus on situation awareness (SA) errors associated with

losing track of one's location on the airport surface (Wickens et

al., 2002).

The Model’s Environment

Thus, we created an ACT-R model of one human pilot, but this

pilot model still had to be situated in an accurate environment.

In this research, three external entities were modeled to

describe the environment: the simulated aircraft controlled by

the pilot model; the simulated visual information available to

the pilot model; and the simulated runway and taxiway environment

through which the simulated aircraft traveled. Each of these

three environmental entities was computationally modeled and

integrated with the cognitive components of the pilot model to

create an overall representation of the interactive human-

aircraft-environment system.

Code for the vehicle dynamics that was used to drive the

actual NASA flight simulator in which behavioral data was

collected was unfortunately unavailable. We therefore had to

create a simplified vehicle model with which the pilot model

could interact. Given vehicle size, mass, and dynamics, however,
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we still did require a somewhat reasonable approximation to the

actual aircraft dynamics used in the experiments in order to be

able to get a handle on timing issues. Although we were not

interested in control issues per se, the dynamics of the aircraft

played an important role in determining decision time horizons, a

key factor in the cognitive representation of the pilot’s

activities. The aircraft model we constructed assumed that the

pilot controlled the vehicle in three ways: applying engine

power, braking, and steering. For the purposes of modeling an

aircraft during taxiing, these three forms of control are

sufficient. Based on Cheng, Sharma, and Foyle’s (2001) analysis

of the NASA simulated aircraft dynamics, we proceeded with a

model in which it was reasonable to assume that throttle and

braking inputs generated applied forces that were linearly

related with aircraft speed.

Steering, however, was another matter. After consideration of

the functional role that steering inputs played in the T-NASA2

scenario, we decided that we could finesse the problem of

steering dynamics by assuming that the manual control aspects of

the steering problem did not play a significant role in the

navigation errors that were observed. That is, we assumed that

making an appropriate turn was purely a decision-making problem,

and that no turn errors resulted from correct turn decisions that

were erroneously executed. Note that this assumption does not

completely decouple the manual and cognitive aspects of the

modeling, however. It was still the case that manual control of
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the acceleration and braking aspects of the model did play a role

in determining the aircraft’s position relative to an impending

turn, and importantly, placed a hard constraint on the aircraft’s

maximum speed of approach to each turn.

The maximum aircraft speeds for the various types of turns

required in the NASA simulation were calculated under the

constraint that lateral acceleration be limited to 0.25 g for

passenger comfort (Cheng et al., 2001) and also the field data

reported in Cassell, Smith and Hicok (1999). For our model, these

speeds were found to be 20 knots for a soft (veer) turn, 16 knots

for a right turn, and 14 knots for a U-turn, and were based on

actual turn-radius measurements from the ORD taxiway layout (all

turns made in these scenarios could be classified according to

this scheme).  Although, due to airport layout constraints,

taxiing would not always occur at the maximum possible speed,

these maximum speeds partially determined the time available to

make a turn decision, and in our model, as this time is reduced

there was a greater probability of an incorrect turn decision.

Our simplification regarding steering merely boiled down to the

fact that once the model had made its decision about which turn

to take, that turn was then executed without error.

To implement this aspect of the model, we decided to model the

ORD airport taxiway as a set of interconnected “rails” upon which

travel of the simulated aircraft was constrained. Taxiway

decision making in this scheme, then, boiled down to the

selection of the appropriate rail to take at each taxiway
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intersection. In this manner, we did not have to model the

dynamics of the aircraft while turning: we simply moved the

aircraft along each turn rail at the specified, turn-radius-

specific speed.

The model used to represent the visual information available

to our ACT-R pilot model was obtained from the actual NASA flight

simulator in the form of a software database. This database

consisted of location-coded objects (e.g., taxiways, signage)

present on the ORD surface, or at least those objects presented

to flight crews during NASA experimentation. Distant objects

became “visible” to the pilot model at similar distances to which

these same objects became visible to human pilots in T-NASA2

experimentation.

Modeling Pilot Background Knowledge

Obviously, the environment and its dynamic properties are

critically important in understanding pilot performance in this

domain, but they do not of course completely determine pilot

behavior; thus the use of a knowledge-based performance model

such as ACT-R. As mentioned earlier, the ACT-R model must be

supplied with the knowledge of how to do this task. This part of

the model-building process is often referred to as “knowledge

engineering” because the demands of gathering and structuring the

knowledge necessary to perform the tasks in such domains are

significant. We focused our efforts on the identification of

procedures and problem-solving strategies used by pilots in this

domain, as well as the cost-benefit structure of those procedures
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and strategies.

Task Analysis and Knowledge Engineering

The task-specific information required to construct the model

was obtained by studying various task analyses of taxiing (e.g.,

Cassell, Smith & Hicok, 1999) and through extensive consultation

with two subject matter experts (SMEs) who were experienced

airline pilots. We first discovered that, in many cases, pilots

have multiple tasks in which to engage while taxiing. Based on

this finding, our ACT-R model only concerned itself with

navigation decision making when such a decision was pending. In

the interim, the model iterated through four tasks deemed central

to the safety of the aircraft.

These four tasks included monitoring the visual scene for

incursions, particularly objects like ground vehicles which are

difficult to detect in poor visibility, maintaining the speed of

the aircraft, since the dynamics of a commercial jetliner require

relatively frequent adjustments of throttle and/or brake to

maintain a constant speed, listening for hold instructions from

the ground-based controller, and maintaining an updated

representation of the current position of the aircraft on the

taxi surface and the location of the destination. While these

tasks often have little direct impact on navigation, they do take

time to execute, and time is the key limited resource in making

navigation decisions in our integrated pilot-aircraft-environment

system model.

With respect to navigation decisions, we found that decision-
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making is highly local. That is, the planning horizon is very

short; flight crews are quite busy in the time after landing and

thus, in situations like ORD in poor visibility, report they do

not have the time to “plan ahead” and consider turns or

intersections other than the immediately pending one. Second, the

decision process tends to be hierarchical: pilots first decide if

the next intersection requires a turn, and if it does, then

decide which turn to make. We found that in the error corpus

available to us, errors in the first decision (whether to turn or

not) were rare (which was also consistent with our SME reports),

and so we concentrated our efforts on understanding how pilots

made the second decision.

The first issue to be addressed was: What kinds of knowledge

and strategies are actually brought to bear by actual pilots in

the kinds of conditions experienced by the pilots in the NASA

study? Largely though interviews with SMEs, we discovered a

number of key strategies employed by pilots, and also discovered

that some of these strategies would not have been available to

our model. Many of these strategies involved the open

communications between ground-based controllers and other

aircraft.  For example, if Qantas flight 1132 has just been given

a clearance which overlaps with the clearance given to United

flight 302, one viable strategy for the United pilot is to simply

follow the Qantas aircraft for the overlapping portion of the

clearance.

Similarly, pilots can use dissimilar clearances to rule out



Using Computational Cognitive    20

certain decision alternatives. For example, when faced with an

intersection that forces the pilot to choose between taxiways A10

and D, if the pilot has just heard another flight given a

clearance which involves A10, then D is the more likely choice,

since the ground controller is unlikely to assign two aircraft to

be on the same taxiway approached from different directions. It

is unclear the extent to which these strategies were available to

the pilots in the T-NASA2 study, because details of what

clearances were given to the (simulated) other aircraft and when

such clearances were given were not available to us. Thus we had

no choice but to exclude these strategies from the model.

At the end of both our task analyses and SME interviews, we

had identified five primary decision strategies available for

making turn decisions:

1. Remember the correct clearance: While fast, this strategy

is increasingly inaccurate as time lapses between obtaining the

list of turns described in the clearance and the time at which

turn execution is actually required.

2. Make turns toward the gate: While somewhat slower than the

first strategy, this strategy has a reasonable level of accuracy

at many airports.

3. Turn in the direction that reduces the larger of the X or Y

(cockpit-oriented) distance between the aircraft and the gate. We

deemed this strategy to be moderately fast, like strategy 2, but

with a potentially higher accuracy than strategy 2, since more

information is taken into account.
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4. Derive from map/spatial knowledge. This is the slowest

strategy available, with high accuracy possible only from a

highly experienced (at a given airport) flight crew.

5. Guess randomly. This is a very fast strategy, although it

is unlikely to be very accurate, especially at multi-turn

intersections. However, we did include it as a possible heuristic

in the model for two reasons: a) it may be the only strategy

available given the decision time available in some cases; and b)

it provides insights into chance performance levels.

The next modeling issue to be dealt with was how to choose

between strategies when faced with a time constrained decision

horizon.

This type of meta-decision is well modeled by the conflict

resolution mechanism ACT-R uses to arbitrate between multiple

productions matching the current situation. The accuracy of

strategies 1 (recall the clearance) and 4 (derive from map

knowledge) is primarily a function of the accuracy of the

primitive cognitive operations required of these tasks, moderated

by factors such as ACT-R’s memory decay and constrained working

memory. However, the accuracy of strategies 2, 3, and 5 is less

cognitively constrained and instead critically dependent on the

geometry of actual clearances and taxiways. As such, we thus

employed an SME as a participant in a study to provide data for

an analysis of the heuristic decision strategies 2 and 3 (the

accuracy of strategy 5, random guessing, was determined by the

taxiway geometry itself).
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For this study, Jeppesen charts for all major U.S. airports

were made available to the SME, a working B-767 pilot for a major

U.S. carrier. He was asked to select charts for those airports

for which he had significant experience of typical taxi routes,

and he was asked to draw, using a highlighter on the charts

themselves, the likely or expected actual taxi routes at each

airport from touchdown to his company’s gate area.  We would have

perhaps never thought of performing this study had the ACT-R

model not required us to provide it with high level (i.e.,

airport neutral) strategies pilots might use in deciding what

turns to make during taxi operations, along with their associated

costs (times required) and benefits (accuracy).

Modeling Taxi Decision Hueristics

To obtain this information, which was required to inform

modeling, we provided our SME Jeppesen charts for all major U.S.,

airports, and then asked him to select charts for those airports

for which he had significant experience of typical taxi routes

and clearances. He selected 9 airports (DFW, LAX, SFO, ATL, JFK,

DEN, SEA, MIA, ORD). The SME was asked to draw, using a

highlighter on the charts themselves, the likely or expected taxi

routes at each airport from touchdown to his company’s gate area.

A total of 284 routes were generated in this way.

Our goal at this point was to identify whether any of the

heuristic strategies identified during task analysis and

knowledge engineering would be likely to yield acceptable levels

of decision accuracy. We obtained an estimate of the accuracy of
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heuristic strategies 2 (turn toward the company’s gates), and 3

(turn in the direction that minimizes the largest of the X or Y

distance between the current location and the gates) by comparing

the predictions these heuristics would make with the data

provided by the SME for the 9 airports studied.  We recognize

that these accuracy estimates may be specific to the (major)

carrier for whom the SME flew, since other carriers’ gates may be

located in areas at these 9 airports such that their pilots are

provided more or less complex, or geometrically intuitive,

clearances than those providing the basis of our SME’s

experience. However, we do believe that this study resulted in

enlightening results regarding the surprisingly high level of

accuracy of simple, “fast and frugal” decision heuristics

(Gigerenzer & Goldstein, 1996) in this complex, operational

environment.

Figure 2 presents the results of an analysis of the effectiveness of these two

heuristic strategies. Note that the XY heuristic is quite good across the board, and

the even simpler “toward terminal” heuristic is reasonably accurate at many major

U.S. airports. As such, we created the turn decision making components of the

pilot model to make decisions according to the set of 5 strategies described

previously, including the two surprisingly frugal and robust “Toward Terminal”

and “XY” heuristics portrayed in Figure 2. One can think of these 5 strategies as

being hierarchically organized in terms of their costs (time requirements) and

benefits (accuracies). The decision components of the cognitive model worked by
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choosing the strategy that achieved the highest accuracy given the decision time

available.

Detailed Description of Dynamic Decision Modeling

From a time-horizon (cost) perspective, the selection of

decision strategies was informed by a procedure for estimating

the time remaining before a decision had to be made. Time

remaining was based on the aircraft’s distance to an intersection

and the amount of slowing necessary to make whatever turns were

available, which was thus dependent on aircraft dynamics.  Recall

that we had an algorithm available to calculate the maximum speed

with which a turn of a given type could be negotiated. Thus, the

computation of time remaining assumed a worst case scenario for

each specific intersection. That is, the time horizon for

decision making was determined by the intersection distance

combined with knowledge of aircraft dynamics, used to determine

whether breaking could slow the aircraft sufficiently to

negotiate an intersection’s sharpest turn.

This “time remaining” calculation was not implemented in ACT-R

(i.e., we did not create a cognitive model of how the pilot

estimated this time), but rather was made by a call from ACT-R to

an external algorithm, so that the model could determine which of

the 5 decision strategies were available in any particular

instance. Because we believed pilots’ abilities to estimate these

times were imperfect, noise was added to the result of the

computations based on the aircraft model such that the result

returned was anywhere from 80% to 120% of the true time
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remaining.

Each turn-related decision strategy was one production rule,

which was allowed to enter conflict resolution only if the

average time it would take the model to execute the procedure was

less than 0.5 seconds less than the decision horizon. This

somewhat conservative approach was used to compensate for the

fact that both the time estimation and strategy execution times

were noisy. Those productions meeting this criteria competed in a

slightly modified version of ACT-R’s standard conflict resolution

procedure. In the default ACT-R procedure, the utility of each

production is estimated by the quantity PG-C, where P is the

probability of success if that production is selected, G is a

time constant (20 seconds is the default), and C is the time

taken until an outcome is reached if that production fires.

Because time cost was irrelevant in this application as long as

the cost was less than the time remaining, this term was removed,

though there was a 1 sec penalty applied to productions whose

time cost was within 0.5 seconds of the remaining time, again a

conservative move to ensure that a decision strategy likely to be

completed will be selected (one of our SMEs indicated a

conservative bias in this direction). The utility of each

production is also assumed in ACT-R to be a noisy quantity, so

the system was not always guaranteed to select the strategy with

the highest utility as computed by the PG-C measure. (Amount of

noise in this computation is a free parameter in ACT-R and a

value of 1 was used as the s parameter in the logistic noise
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distribution. This yields a standard deviation of about 1.8,

which was not varied to fit the data.) Thus, there were two

sources of noise in this situation: estimation of time remaining,

and the utilities of the strategies themselves.

In the pilot model, the P for each production was estimated

according to the actual probability of success of each of the

decision strategies. Thus, P for the production initiating the

“turn toward the gate” production was 80.7% since that was the

success rate for that strategy as determined by the SME study. P

values for the other two decision heuristics (3 and 5 above) were

calculated in an analogous fashion, and P values for strategies 1

(recall the actual clearance) and 4 (derive from the map) were

determined by the boundedly-rational cognitive mechanisms

inherent in the ACT-R cognitive architecture. With the entire

model in place, we then ran a Monte Carlo simulation (300

repetitions at each of 50 time horizons) to determine the

probability of selection for each strategy as a function of

decision time available. These simulation results are presented

in Figure 3.

As is clear from Figure 3, as the decision horizon decreases,

so does the likelihood that the pilot model will select a less

accurate strategy. In fact, in the time window from about 2.5 to

about 8 seconds, the environmentally-derived heuristics dominate

alternative strategies. However, this can be viewed as adaptive

since a fast and frugal strategy that can run to completion can

frequently outperform an analytically superior decision strategy
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that must be truncated due to time constraints (Gigerenzer &

Goldstein, 1996). As such, these results are not necessarily

surprising, but do suggest that error reduction efforts requiring

new decision strategies will have to be evaluated in light of the

availability of potentially more frugal heuristics that may yield

relatively robust performance, yet fail in situations where the

environmental regularities embodied in these heuristics are not

satisfied (Reason, 1990). For example, modeling indicated that

the “turn toward gate” heuristic takes approximately 2.5 seconds

to compute with 80% accuracy. A rational pilot would not favor a

new strategy or technology over this heuristic unless the

increased benefit/cost ratio of a novel decision strategy was

significantly superior to this “quick and dirty” method.

Empirical Adequacy

Appropriate techniques for the verification and validation of

human performance models based on computational, cognitive

modeling is an issue of great cur rent interest (see, e.g.,

Leiden, Laughery & Corker, 2001), and it is fair to say that

there are no unanimously agreed upon criteria in this area. In

the following, we present two sources of empirical evidence in

support of our dynamic, integrated, computational model of this

pilot-aircraft-visual scene-taxiway system. The first source of

support is a global analysis of the frequency of taxi navigation

errors as a function of intersection type. The second is a more

finely grained analysis at an error-by-error level.

Global Evidence for Decision Heuristic Reliance
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Nine different taxiway routes were used in the T-NASA2

baseline scenarios, covering a total of 97 separate intersection

crossings. Since each route was run 6 times, a total of 582

intersection crossings occurred in the baseline trials. As

mentioned earlier, in only 12 instances were crews observed to

make significant departures from the cleared route, resulting in

an error rate (per intersection, rather than per trial) of

approximately 2% (Goodman, 2001).

As Goodman (2001) reported, of the 582 intersection crossed,

the clearance indicated that crews should proceed in a direction

toward the destination gate in 534 cases (91.8%), while the

clearance directed crews in directions away from the gate in only

48 cases (or 8.2%). Upon examining this information with respect

to the predictions of both the “Toward Terminal” and “XY”

heuristics embodied in our model, we discovered that at every one

of the 97 intersection crossings in T-NASA2 scenarios at which

the cleared route conflicted with both these two heuristics, at

least one taxi error was made. These accounted for 7 of the 12

taxi errors observed.

In addition, and as will be discussed in the following

section, 4 of the 12 taxi errors were attributed not to decision

making, but rather to a loss of situation awareness or SA (i.e.,

losing track of one’s position on the airport surface, see

Goodman, 2001 and Hooey and Foyle, 2001), a cognitive phenomenon

beyond the scope of the present modeling. Our modeling approach

assumed that location knowledge (loss of SA) was not the primary
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factor in contributing to taxi error, but instead time-stressed

decision making combined with what might be called “counter-

intuitive” intersection and clearance pairs; i.e., those at which

both the “Toward Terminal” and “XY” heuristics failed due to

either atypical geometry or clearances.

Local Evidence of Decision Heuristic Reliance

The Goodman (2001) report provided a detailed analysis of each

of the 12 taxi errors observed in the baseline conditions of T-

NASA2 experimentation. In the following, we briefly consider each

error in turn. When we use the term “classification,” we refer to

the terms adopted by Hooey and Foyle (2001), and have bolded

errors we believe to provide evidence for our model, and

especially for the “fast and frugal” decision heuristics it used

to make decisions under time stress. We have used italics to

indicate errors due to loss of SA, as such are beyond the purview

of our research, thus providing neither support for or against

our model, given our initial modeling focus. In the following,

all quotations are from Goodman (2001).

Error 1: This error was classified as a “decision” (as opposed

to “planning” or “execution”) error, and it confirms our modeling

as the crew turned toward the gate when the clearance indicated a

turn away from the gate.

Error 2: This error was also classified as a decision error

associated with “lack of awareness of airport layout and

concourse location.” We thus consider this error due to a loss of

SA.
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Error 3: This error was classified as a “planning” error in

which the “crew verbalized that Tango didn’t seem to make sense

because it was a turn away from the concourse.” They thus turned

in a direction toward the destination gate.

Error 4: This error was classified as an “execution” error due

to perceptual confusion over center-lines, the crew nonetheless

prematurely turned in the direction of the concourse.

Error 5: This error was classified as an execution error as

vocalizations indicated the crew was aware of the proper

clearance. However, they made a premature turn toward the gate.

Error 6: This error was classified as an execution error as

the Captain stated that the lines were confusing, but made a

premature turn into the ramp area near the destination gate.

Error 7: This error was classified as a planning error as the

FO verbally omitted an intermediate turn in the clearance to

Foxtrot. However “the turn to Foxtrot would have led pilots away

from concourse – Instead, FO suggested turning toward concourse

on Alpha.”

Error 8: This error was classified as a decision error as the

crew immediately made a turn toward the gate after exiting the

runway, while the clearance prescribed a turn away from gate.

Error 9:  This error was classified as an execution error, as

the FO voiced confusion over center-lines. Crews made a (1-gate)

premature turn into the concourse area while the clearance

indicated they should proceed ahead further prior to turning into

the concourse.
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Errors 10, 11, and 12: Each of these errors was classified as

a due to a loss of SA, due to the FO being “head down with Jepp

chart, [and] didn’t realize where they were on the airport

surface” (Error 10), the crew “Demonstrated lack of awareness of

airport layout” (Error 11), and “FO lacked awareness of their

location on the airport surface” (Error 12).

While several of these errors were not, strictly speaking,

classified as decision errors, we think it is revealing to note

that the bulk of the errors classified as planning and execution

errors are consistent with the same decision-making heursistics.

Summary

Errors in the T-NASA2 experimentation arose due to both poor

SA as well as to turn-related decision making (Goodman, 2001). As

described in an early section of this paper, we decided to focus

our modeling efforts on decision-related errors, thus

complementing other modeling efforts that took SA-related errors

to be the focus of their efforts. In summary, given the empirical

results provided above, we conclude that there is reasonably good

empirical support for our model.

Conclusions

We are encouraged by the results of this research to continue

to pursue computational, cognitive models of human performance in

dynamic, aviation contexts. We believe that the errors observed

in the T-NASA2 scenario were consistent with the results of our

analysis of information-impoverished, dynamic decision making,

and the mechanisms by which it was embedded in the ACT-R modeling
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architecture. As such, we believe that the view of cognition

embodied in ACT-R, as constrained adaptation to the statistical

and cost-benefit structure of the previously experienced task

environment, achieves some level of support from this research.

The crux of the interpretation of taxi errors in T-NASA2 is

that pilots had multiple methods for handling individual turn

decisions, and used the most accurate strategy possible given the

time available (cf. Payne and Bettman, 2001). When time was

short, as a function of poor visibility, workload, and aircraft

dynamics, the model assumed that the pilot tended to rely on

computationally cheaper, but less specific information gained

from experience with the wider class of situations of which the

current decision is an instance. In the case of the T-NASA2

scenario, this more general information pertained to the typical

taxi routes and clearances that would be expected from touchdown

to gate at major U.S. airports.

This interpretation is also consistent with the fact that the

suite of display aids used in the high-technology conditions of

T-NASA2 experimentation, by providing improved information to

support local decision making, effectively eliminated taxi

errors. We hope that this research will motivate more members of

the human factors and aviation psychology communities to study

human performance issues with the benefits of emerging

developments in computational cognitive modeling. We believe that

detailed modeling of dynamic, integrated, human-machine-

environment systems holds great promise for meeting the
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challenges posed by emerging, systems-oriented views of error

etiology in complex, operational systems.

Implications

Obviously, the model presented here does not generalize

directly to operational taxiing situations due to practical

limitations in both the original study and the modeling effort

itself. However, we believe that the ultimate lessons learned

from this effort are relevant. This includes the general lesson

that the details and dynamics of both the human cognitive system

and the structure of the environment in which that system

operates must be considered jointly, not in isolation from one

another. More directly in the taxiing domain, this research

suggests that taxi routes which are inconsistent with the

heuristics available to time-pressured flight crews are likely to

be error-prone, and will continue to be so until a system which

makes the correct route computable with greater speed and

accuracy than those heuristics is made available to flight crews.
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Figure Captions

Figure 1. The ACT-R cognitive architecture

Figure 2. Accuracy of “Toward Terminal” and “Minimize Greater of

XY Distance” Heuristics.

Figure 3. Selection Probability for Each Decision Strategy by

Decision Time Horizon
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