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Abstract
A persistent problem in computational cognitive modeling is 
that many models  are stochastic. If a model is  stochastic, what 
is  the prediction made by the model? In general, this problem 
is  solved via Monte Carlo simulation. This raises the question 
of how many runs  of the model are adequate to produce a 
meaningful  prediction, a question  that has  received 
surprisingly  little attention from the community. This  paper 
proposes a systematic approach to the selection of the number 
of model runs based on confidence intervals  and provides 
tables and computational examples. 
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Introduction
One of the primary advantages of computational modeling 
over purely informal theorizing is that computational 
models are often capable of producing quantitative 
predictions about human performance. That is,  beyond 
saying “condition A will generate more errors than condition 
B” models can often produce numerical predictions for the 
error rates in A and B, which has considerable advantages, 
both theoretically and practically.

However, it turns out that “the prediction” of a model is 
not always exactly known. If the model in question is 
deterministic or can be represented by a closed-form 
equation, then this is not an issue. However, if the model is 
stochastic, which many computational cognitive models are, 
then this is a potential problem—one that has received 
almost no attention in the literature. This is most likely 
because a solution is apparent: run the model multiple times 
and take the average across those runs to be the model’s 
prediction. This is termed Monte Carlo (MC) simulation. 

However, this raises another question that has generally 
not been systematically addressed: how many times should 
the model be run? Most people have the intuitive sense that 
more runs are better. We trust an average across 100 model 
runs more than an average of 5 model runs. But are there 
cases when 5 is enough? Are there cases when 100 is not 
enough? How many model runs are “enough” for the 
point(s) reported as “the model’s predictions(s)” to be an 
accurate representation of what the model really predicts?

Running the model repeatedly is sampling from an 
infinitely large population: all possible runs of the model. In 
this sense, the prediction of a model is a single point—the 
mean of all possible runs. However, since “all possible 
runs” is an infinite population, we must sample, and 
therefore we must tolerate some uncertainty about the true 
prediction made by the model. This is the domain of 
inferential statistics, one that should be familiar to anyone 

who has taken a statistics course, yet there is a peculiar lack 
of discussion of this question in modeling papers and almost 
no evidence of statistical methods being applied to this 
problem. “How large a sample should be taken?” is not a 
new question in statistics, but it has received little attention 
from cognitive modelers.

Understanding this issue is important for both model 
builders and people who evaluate stochastic models. For 
model builders, it is critical to understand what the 
predictions of the models really are. Consider a model of an 
experiment where subjects make errors. There are two 
conditions in the experiment. In condition A,  the subjects 
made errors on 3.6% of the trials. In condition B, the 
subjects made errors on 7.0% of the trials.  Inferential 
statistics performed on the human data indicate that this 
difference is statistically reliable. How many runs of the 
model are necessary to be sure that the model legitimately 
makes different predictions in the two conditions? 

Similarly,  a surprisingly high percentage of papers that 
present such models contain no information whatsoever 
about how many times the model was run in order to 
generate the point predictions, or use questionable methods 
for determining the number of model runs. How credible are 
the model’s “predictions” under such conditions? If a model 
of the just-described experiment were presented where the 
model was run 50 times in each condition, is the modelers’ 
claim that the model captures the difference between the 
conditions credible?

Previous Approaches
One of the only systematic discussions of this issue appears 
in Ritter, Schoelles, Quigley, and Klein (2011). One of the 
most salient parts of that paper is their Table 1, where they 
present a list of papers in the 2004 proceedings of the 
International Conference of Cognitive Modeling and note 
both how many human subjects were run and how many 
times the model was run to generate the reported results. 
Nearly half (14 of 33 papers) report no information at all 
about how many model runs were used. It is thus difficult to 
know what approach was used.

A common approach (and one I admit I have frequently 
relied on in the past) is to simply choose an arbitrarily large 
number (e.g., 100) and assume that number is “large 
enough” that the issue is addressed.  This is at least better 
than reporting nothing, and running the model many times is 
almost certainly better than running it few times, but this 
approach is not well-motivated mathematically and there 
may be cases where 100, while large, still is not “large 
enough.”



Another approach that appears common (at least 
anecdotally; this does not appear often in the cited data) is to 
run the model the same number of times as there were 
human subjects in the experiment being simulated. There is 
a certain intuitive appeal to this approach—if n was enough 
in the human data, then n should be enough for the model. 
This logic is fundamentally flawed, though. If collecting 
human data could be done in almost no time and at almost 
no cost, every experiment would have a great many subjects 
and inferential statistics would be unnecessary. However, 
there are often substantial costs to collecting human data, 
and the same cost function often does not apply to running a 
model. Collecting 1,000 subjects worth of data is practically 
impossible for many human experiments but is eminently 
tractable for many simulation models run on modern 
computing hardware. If modelers want to claim that their 
models are truly making point predictions, the number of 
model runs should be determined by the mathematics of 
sampling and not the practical costs associated with running 
subjects. 

However, it should be noted that for some models 
equalizing the number of subjects and the number of model 
runs may indeed be an appropriate approach. For example, 
Daily,  Lovett, and Reder (2001) ran the same number of 
ACT-R models as human subjects because each ACT-R 
model run was parameterized to match a specific subject in 
the data set, and model predictions were compared with 
individual subject data rather than group means. This is 
certainly not the norm, however, as most model data takes 
averages of model runs and compares those to mean human 
data.

Furthermore, some models do have higher costs 
associated with each run. For example, the ACT-R model 
described in Zemla, et al.  (2011) was coupled somewhat 
unreliably to a real-time flight simulator and each run of the 
model could take more than 10 minutes, and some runs 
failed because the coupling was lost. Thus, even 40 runs of 
the model could take many hours to perform. 

In the more general case,  however, most cognitive models 
compare the mean prediction of the model with a mean 
based on many subjects, and runs of the model are relatively 
cheap. What then? 

One approach is to run the model repeatedly until the 
mean converges. That is,  until additional model runs do not 
change the mean model prediction by more than some small 
threshold value. For an example of this approach in practice, 
see Teo, John, and Blackmon (2012). This approach is often 
only practical if model runs are not just cheap,  but 
extremely cheap. For example, the cited example used more 
than 20,000 model runs.

Another possible, though not recommended, strategy is to 
use an inferential statistical test (such as a t-test) in an 
attempt to show “no significant difference” between the 
model and the human data. The logic behind this approach 
is faulty for two reasons.  First, failure to reject with an 
inferential test does not provide evidence that two samples 
are equal; this is a gross misunderstanding of statistical 

tests.1 Second, such tests are most likely to fail to find a 
difference when small sample sizes are used, so this method 
rewards higher levels of uncertainty about the model’s true 
prediction.  

Ritter, et al.  (2011) present an approach based on power 
analysis to provide general guidance on the number of 
model runs to use. This is an interesting strategy, but it has 
some limitations. In particular, it assumes that the model 
and the data each have only two points with a well-defined 
statistical effect size between them, and does not apply to 
situations where proportions are used. The current method 
takes a different, though somewhat related, approach that is 
intended to be more general.

Confidence Intervals
A confidence interval is a statistical construct that provides 
information about the location of a population parameter 
based on a sample statistic. Modelers want to know the 
value of a population parameter (the mean of all possible 
runs of the model), but cannot know it because the 
population is infinite. Thus a sample statistic (the mean of 
the MC runs) is used to estimate the population parameter. 

A confidence interval requires the specification of a 
confidence level, which is generally a large percentage; 95% 
is the modal choice in many domains. A confidence interval 
is a range of values such that the confidence level 
proportion of those intervals will contain the true population 
parameter. That is,  95% of the 95% confidence intervals for 
the mean will contain the true sample mean.

In general, confidence intervals are computed by taking 
the sample mean and constructing the interval around that 
mean, given a desired confidence level and the sample size. 
The method proposed here essentially does this in reverse: it 
computes the appropriate number of MC runs (denoted n) 
that should be conducted in order to achieve a confidence 
interval of a particular width given a desired confidence 
level. The confidence level will be assumed to be 95% but 
computations could be carried out for other confidence 
levels if desired. For example,  if a modeler wanted to be 
95% certain that the true prediction of their model was 
within 1% of the mean of the sample, this method can then 
determine the appropriate n.  This will be made more 
concrete with examples in the following sections.

Note that constructing confidence intervals requires that 
certain assumptions be met. The two most critical 
assumptions are:

• Random sampling.  It is critical that the MC methods 
used do not introduce systematic bias such that some 
random numbers are more likely than others. This is 
unlikely unless poor random number generation schemes are 
used.

• Independent and identically distributed.  Each run of the 
model must be statistically independent from the other runs, 
that is, what happens in one run of the model cannot affect 
the behavior of other runs, and all runs must come from the 
same distribution. The independence assumption can be 

1 Note that  there are more recent Bayesian methods that do allow testing for equality. However, these methods are not in  widespread use 
and are more mathematically complex. Full development of methods based on such techniques is beyond the scope of the current paper.



potentially problematic for some models, particularly those 
models that learn over time. The identical distribution 
assumption may be violated by some models as well.  For 
instance, if sometimes the model follows one strategy and 
sometimes it follows others, and those strategies affect the 
outcomes, then not every sample comes from an identical 
distribution. 

Models of Proportions
Some models produce proportions as their output. The most 
common form of this is probably the proportion of trials 
correct. The standard equation for a confidence interval for 
a proportion is this:

CI = p ± zα /2
p(1− p)
n

   [1]

where CI is the confidence interval, p is the observed 
proportion, n is the sample size, and zα/2 is the value of the 
normal distribution that represents the upper tail of the 
distribution set by the confidence level. (For a 95% interval, 
this value is 1.96.) The width of the confidence interval, 
denoted w, is thus:

w = zα /2
p(1− p)
n

    [2]

This equation can then be solved for n to produce an 
equation to specify the minimum number of model runs 
necessary to produce a confidence interval with the desired 
width:

n = p(1− p) zα /2
w

⎛
⎝⎜

⎞
⎠⎟
2

    [3]

Note that an integer number of model runs is required,  so 
the ceiling of this value should be taken. 

In the case of proportions, the minimum sample size is a 
function of the proportion. In general, the model should be 
producing the same proportion as the human data, so p 
should usually be known; generally the modeler should only 
have to specify the desired width w.  Table 1 presents the 
minimum n for a range of values of w and p assuming 95% 
confidence. w appears on the vertical and p along the 
horizontal.  For values of p greater than 0.5,  the table is 
simply mirrored; a p of 0.7 is equivalent to a p of 0.3.

Note that Equation 3 has some potential issues with 
statistical assumptions. This is an approximation, and this 
particular approximation starts to break down as p 
approaches 0 or 1, particularly as n gets smaller. While the 
appropriate correction for this is the subject of some 
discussion in statistical circles, for the purpose of estimating 
required sample size, the simple Yates correction (Blyth & 
Still,  1983) is almost certainly adequate, and has been 
applied whenever the uncorrected np < 10. (See the 
Appendix for details, including complete equations.)

An example will help illustrate.  In the scenario described 
in the introduction,  there were two conditions, A and B, that 
had error proportions of 3.6% and 7%. The modeler needs 
two values for n, one for each group.  For group A, p is 
0.036.  For group B,  p is 0.07. The difference between the 
two values is 3.4%, so to be sure the model predicts a real 
difference between conditions, w should be half that value, 
or 0.017. Assuming 95% confidence,  meaning a z of 1.96, 
then then by Equation 3 the number of model runs needed in 
condition A is 462 and in condition B it is 866. 

These are large numbers of model runs. It is highly 
unlikely that the experiment being modeled involved over 
1300 subjects, so matching the number of model runs to the 
number of subjects is not likely to produce large enough 
numbers. In fact,  even a moderately large number of 
subjects (e.g., 100 or 200) would produce a number of 
model runs that would be grossly inadequate if the modeler 
simply matched to the number of subjects. 1,000 model runs 
in each condition would have worked, but a brief glance at 
Table 1 shows that there may be circumstances when even 
1,000 runs will not be sufficient to guarantee confidence in 
the true value of the model’s prediction, particularly as p 
approaches 0.5 and the desired interval width gets smaller. 
Discriminating 50% from 45%, for example,  would require 
several thousand model runs for each group.

Note that the width w is not necessarily a function of the 
difference between two groups; this value is at the discretion 
of the researcher, and of course larger values of w require 
fewer model runs. Researchers should be aware, however, 
that small numbers of model runs can produce substantial 
uncertainty about what exactly the model’s predictions 
really are. Reviewers of modeling research should be aware 
of this as well.

Proportion (p)Proportion (p)Proportion (p)Proportion (p)Proportion (p)Proportion (p)Proportion (p)Proportion (p)Proportion (p)Proportion (p)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Width
(w)

0.005 7300 13830 19593 24587 28812 32270 34959 36880 38032 38416

Width
(w)

0.01 1825 3458 4899 6147 7203 8068 8740 9220 9508 9604
Width

(w)
0.02 457 865 1225 1537 1801 2017 2185 2305 2377 2401Width

(w) 0.05 109 139 196 246 289 323 350 369 381 385
Width

(w)
0.1 36 53 68 62 73 81 88 93 96 97

Width
(w)

0.15 19 27 34 40 45 36 39 41 43 43

Table 1. Minimum number of model runs (n) to achieve desired confidence interval width (w) for model fitting to proportion 
(p), assuming 95% confidence level. Shading indicates continuity correction was applied (see the Appendix for full details).



Models of Ratio or Interval Data
Proportion data are actually simpler to work with, because 
the variance in a sample of proportion data is known exactly 
when p and n are known, and there are no issues with units. 
This is not the case for interval or ratio data where the 
variance in a sample is not necessarily dependent on the 
mean. Furthermore, the meaning of a given interval width is 
dependent on the units. ±1% has a clear interpretation in the 
case of a proportion, but the value of saying ±100 units 
depends heavily on the units, and possibly also the scale of 
data. For example, saying the prediction of a model is 
known with ±100 ms when the task being modeled takes 
500 ms is not particularly precise, but ±100 ms for a task 
that takes 6 minutes is probably much greater precision than 
the actual data. So, unlike with proportion data, magnitudes 
and units matter. 

This makes determining the appropriate number of model 
runs more challenging. However, there are certain 
simplifications that can be made to make the problem more 
tractable. These simplifications can be applied to any type 
of interval or ratio data and the equations still apply, but the 
underlying assumptions are likely more valid for certain 
types of measurements than for others. Because response 
time is still one of the most common dependent measures in 
experimental psychology, there are many models being fit to 
response time data, and so these simplifications are intended 
to be most appropriate when applied to response time data.

The first simplification is that a unitless measure of w,  the 
target confidence interval width, is desirable. This allows 
intervals to be compared across measurements and 
simplifies the equations.  In order to do this, w is defined 
here as “proportion of the mean.” That, a w of 0.1 represents 
10% of the mean,  whatever that mean is. So, if the mean of 
the human data is 1200 ms and the desired precision is ±100 
ms, then w would be 0.083. This is not unusual in 
engineering applications, where the goal is often to be 
accurate within a certain percentage of the mean.

The second simplification involves variance. The standard 
equation for a confidence interval for interval or ratio data is  
the following:

CI = M ± zα /2
σ
n

    [4]

where is M is the sample mean, z is the usual value of 
standard normal (1.96 for 95% confidence), σ is the 
standard deviation, and n is the sample size. Thus, the width 
is a function of the standard deviation (square root of the 
variance) of the sample. However, in modeling human 
performance,  it is often the case that the standard deviation 
scales with the mean. That is, models of tasks that take 5 
minutes have larger variances than models of tasks that take 
800 ms; this is generally true of human data but also many 
models. This allows the use of the coefficient of variation 
(CV) as a measure of variability. The CV is defined as:

CV = σ
µ

     [5]

So, if the standard deviation and the mean scale 
proportionately, the CV will be constant. This is not always 
true in either human or model data, but it provides a starting 
point.  If w is taken as a multiplier on the mean, then the 
width of a confidence interval can be computed by solving 
the following equation:

wµ = zα /2
σ
n

    [6]

for n. The intermediate form of the solution looks like this:

n = zα /2
σ
wµ

    [7]

Notice, however, that the standard deviation divided by 
the mean is the coefficient of variation. Thus, the final form 
of the equation for determining the minimum number of 
model runs is the following:

n = zα /2
w
CV⎛

⎝⎜
⎞
⎠⎟
2

    [8]

Again, non-integer values of n should be rounded up to 
the nearest integer.

Note that these equations (starting with Equation 4) 
assume that the population standard deviation (that is,  σ) is 
known. In practice this assumption is fine as long as the 
sample size is moderately large, over about 100. For smaller 
values of n,  the t-distribution should be used to determine 
the critical value rather than the normal (z) distribution. 

Table 2 shows the minimum number of model runs 
required to produce the desired interval with w for a given 

Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)Coefficient of variation (CV)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Width
(w)

0.005 385 1537 3458 6147 9604 13830 18824 24587 31117 38416

Width
(w)

0.01 99 385 865 1537 2401 3458 4706 6147 7780 9604
Width

(w)
0.02 27 99 217 385 601 865 1177 1537 1945 2401Width

(w) 0.05 7 18 37 64 99 139 189 246 312 385
Width

(w)
0.1 5 7 11 18 27 37 50 64 81 99

Width
(w)

0.15 5 5 7 10 13 18 24 30 37 46

Table 2. Minimum number of model runs (n) to achieve desired confidence interval width (w) for model with coefficient of 
variation (CV), assuming 95% confidence level. Shading indicates correction for small n (see the Appendix for full details).



coefficient of variation (CV), assuming 95% confidence. 
Table values with shading have been adjusted for smaller n 
using the t-distribution to compute the required critical 
value. Note that the rightmost column in Table 2 is nearly 
the same as in Table 1. This is not accidental,  as both are 
ultimately based on the normal distribution.

Unsurprisingly, the more variable the model is, the more 
model runs will be required. Similarly, the narrower the 
desired width is, the more model runs will be required. For 
example, a model with a standard deviation of 180 ms being 
fit to a mean of 900 ms produces a coefficient of variation 
of 0.2,  so to produce an interval where the sample is 95% 
certain to be within 5% of the mean (that is, w is 0.05) will 
require only 64 runs of the model. Of course, 5% of the 
mean is 45 ms, so if there are many conditions with small 
differences, a narrower width may be required and thus 
more model runs may be necessary to differentiate the 
model’s predictions across conditions.

Unfortunately, this approach leads to something of a 
chicken-and-egg problem: how can one know the CV of a 
model prior to running it? Unfortunately, for many models 
there is no a priori way to know what the CV for the model 
will be. Sometimes this can be estimated based on similar 
models, or if a model must be run in multiple conditions the 
CV used in one condition is often a useful guide for what it 
will be in other,  similar conditions. However, this still does 
not address a brand new model in a new domain. So where 
to begin?

A conservative way to start is to use the CV of the human 
data. Many stochastic modeling systems produce data that 
are less noisy than the human data upon which they are 
based, in which case the CV from the human data is a worst-
case scenario. This may be somewhat more expensive in 
terms of number of model runs, but it should guarantee that 
the target interval width is achieved.

Unfortunately, the CV from the human data is not always 
available. Models of experiments where the complete 
original human data are not available are not uncommon, 
and variability is not always reported by experimenters. 
What then? Unfortunately, there is no obvious answer. A 
practical suggestion is to begin by running the model 20 
times, estimate the CV from those 20 runs, and then consult 
Equation 8 (or the table) to see if additional model runs are 
necessary. This will sometimes produce too many model 
runs but at least provides a starting point. (Note that, strictly 
speaking,  this violates the assumptions of computing the 
confidence interval if more runs are required. However, this 
is not likely to be a problem as long as this procedure is not 
repeated often for the same interval.)

Note that w could be specified as an absolute tolerance in 
the original units—e.g., milliseconds—and essentially the 
same equations could be applied, but then scale invariance 
would be sacrificed. This may be desirable for certain 
modeling contexts and would certainly be a reasonable 
alternative.

Discussion
Stochastic models, by definition, imply uncertainty. This 
uncertainty is manageable, but only if modelers collect 
samples of adequate size. Samples that are too small make it 

difficult to be confident that the reported prediction of the 
model is close to the true prediction of the model. Samples 
that are too large have no negative consequences other than 
simulation expense, though that can be a legitimate issue for 
some models. Therefore, it behooves the field to take a 
principled approach to determining the number of runs to 
use when performing MC simulations.

Most critically, common and simple heuristics like 
“perform the same number of runs as the number of human 
subjects” and “pick an arbitrarily large number” fail to 
respect the mathematics of the situation. Fundamentally, the 
field needs to honor known relationships between sample 
size and uncertainty in estimation. One way of 
accomplishing this is through the use of confidence 
intervals. This is not a panacea, but forms a principled basis 
for computing sample size and will hopefully serve as a 
starting point for future modeling work.

Current reporting practices make this difficult. As noted 
by Ritter, et al. (2011), many papers do not even report the 
number of model runs used. This should be a basic 
requirement for all stochastic models. Furthermore, papers 
should report not only how many runs were used,  but the 
basis for selecting that number. Matching to the number of 
subjects and informal “guesstimation” are not principled 
ways of choosing this number, and requiring modelers to 
report their rationale should encourage more principled 
approaches.

Given the size of the numbers in most of Table 1, it seems 
highly likely that many extant models of proportional data 
are using insufficient sample sizes. Shortcomings like these 
need to be addressed. Fortunately, Table 1 can be used 
straightforwardly as a guide to help those evaluating such 
models and should be able to help identify cases where 
insufficient model runs have been performed.

However, in the case of interval and ratio data, knowledge 
of the sample size and the justification for choosing it is still 
not sufficient information, because the number of model 
runs required is also a function of the variability in those 
runs. Here that variability is expressed as the coefficient of 
variation,  but reporting of the variance or standard deviation 
of model runs would allow computation of the CV, and 
therefore computation of the appropriate sample size by 
reviewers or other researchers. It does not seem 
unreasonable to require reporting of this information as 
well. Such a requirement would encourage modelers to 
consider whether or not they had a sufficient number of 
model runs, and would allow more informed evaluation of 
models.

Note that the methods described here are not intended to 
be completely comprehensive; there are certainly situations 
modelers will encounter that are not covered by these 
equations. For instance,  if the subjects being modeled 
produce multinomial proportions, (that is, split responses 
between three categories rather than two), then neither of 
the approaches here will apply. There are many kinds of 
data modeled and it would be nearly impossible to cover 
ever possibility. However, there are ways to compute 
confidence intervals for many other kinds of data, and thus 
the general approach outlined here could serve as a guide.



The ultimate goal of principled methods of selecting the 
number of model runs is increasing the accuracy and 
transparency of the modeling process. Note that the 
proposed procedure does not remove all judgment from the 
decision. The appropriate value for w is still at the discretion 
of the modeler, and reasonable disagreement about what the 
appropriate value of w should be is possible. Simply 
initiating such discussion would be an important step 
forward.

Finally, resources for computing sample sizes, including 
code in both R and Python, as well as web-based 
calculators, can be found at:

 http://chil.rice.edu/research/nomr/
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Appendix
As noted in the main text, Equations 1 and 4 are large-
sample approximations that require adjustment under certain 

conditions. Equation 1 is particularly difficult because the 
“true” confidence interval for a proportion is not,  in fact, 
symmetric about the sample mean. A great deal of debate 
has gone on in the statistical literature on how to best 
estimate the confidence interval for a proportion (see, e.g., 
Agresti & Coull, 1998). However, while there are many 
more sophisticated methods for estimating the confidence 
interval for a sample, these methods have not been applied 
in reverse, that is,  in order to compute the sample size 
necessary to produce a desired interval. In general,  the 
recommendation is that the standard (or “Wald” form) of 
Equation 1 is adequate for sample size estimation. However, 
this equation is know to be a particularly bad approximation 
when the product np is less than 10. The simplest correction 
to solve for n is the Yates correction (Blyth & Still, 1983), 
where w is computed this way:

w = zα /2
p(1− p)
n

+ .5
n

   [A.1]

This can be solved for n as follows:

n =

zα /2
w

+ p(1− p)+ (zα /2
w

+ p(1− p))2 − zα /2
w

⎛
⎝⎜

⎞
⎠⎟
2

2 zα /2
w

 [A.2]

As usual, this should be rounded up to the nearest integer. 
Values in Table 1 were computed first using Equation 3, but 
then if that produced np < 10, equation A.2 was used in its 
place.

For Equation 4, the approximation starts to break down 
because the population standard deviation is unknown and 
must be estimated from the sample. For large samples, this 
is not a problem, but when n drops below 100, a correction 
should be applied to compensate. The correction for this is 
simple and uncontroversial: the critical value for t is 
substituted for the critical value for z.  This yields the 
following equation for n as a function of w and the CV:

n = tα /2 (n −1)
w

CV⎛
⎝⎜

⎞
⎠⎟
2

   [A.3]

The alert reader will note that the degrees of freedom for t 
depends itself on n, meaning the equation is indeterminate. 
The equation for the t distribution is solvable, but this is 
unnecessarily complicated; the equation can be computed 
starting with a large n and then n adjusted downward until 
the equation converges. This is the method used to generate 
the entries in Table 2 whenever Equation 8 generated an n 
less than 100. In practice, the adjustment is not large; this 
simply added 2 or 3 to the value of n required. 

Note that the t-based correction assumes the population 
being sampled from is normally distributed. The t-based 
approximation should be fine for any population that is 
roughly continuous,  unimodal, and symmetric. Since many 
models use Gaussian or logistic (which is nearly normal) 
noise, this will usually not be a problem. For more non-
normal populations, other corrections would have to be 
adopted on a case-by-case basis depending on the shape of 
the population distribution. 
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