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ABSTRACT

Users of modern GUISs routinely engage in visual searches for
various control items, such as buttons and icons. Because this
is so ubiquitous, it is important that the visual properties of
user interfaces support such searches. The current research is
aimed at deepening our understanding of how the visual
spacing between icons affects visual search times. We
constructed an experiment based on previous icon sets [8]
where spacing between icons was systematically manipulated,
and for which we had a computational cognitive model that
predicted performance. In particular, the model predicted that
larger spacing would lead to slower search times. While this
prediction was borne out, there was an unanticipated finding:
users in this new experiment were substantially slower than in
previous similar experiments with smaller spacing. In fact,
results from this new experiment were better fit with a model
that employed a fundamentally different, and less efficient,
search strategy. A second experiment was conducted to
explicitly test the surprising result that this varied and larger
icon spacing would lead to increased search times. Results
were consistent with this hypothesis. These results imply that
while small differences in visual layout may not intrinsically
produce large differences in user performance, they may
cause users to adopt suboptimal strategies that do produce
such differences.
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INTRODUCTION

With the advent of graphical user interfaces (GUIs) for
computers came the convention of representing computer
files, commands, and objects with icons. Icons are so
commonly used today that most computer users are dependent
on them to issue commands or find files. The task of
searching for an icon and its associated file name is one with
which computer users have become very familiar. Icons are
especially useful in handheld devices such as personal digital
assistants and cellular phones. These devices have much
smaller screens than typical desktop computers, and hence it
is important to conserve available screen space. Icons help
alleviate this problem because they can convey more
information or represent many commands in a minimum
amount of space. Icons may differ in size, shape, color, and
motion, whereby, some, none, or all of these aspects can be
used to provide information to users. Because iconic
representation has become very common, more research
examining how people search for icons is needed.

The widespread adoption of icons meant that a memory task
(e.g., recalling file names) was replaced with a visual search
task (e.g., finding an icon that represents a desired file). In
order for a person to use an icon, they must first, of course, be
able to locate it. The process of visual search is important
because it affects several crucial aspects of target selection:
time needed to find the target, whether the target will be
correctly identified as such, and whether the target will be
found at all. When icons are used, the cost of such file
representation must be examined. This cost includes both the
time spent completing a task and associated selection errors.
Further research could help reduce this cost as better-designed
icons could represent a larger volume of information more
effectively.

While the cost in user time of “bad” icons may seem small—a
second here, a second there—the importance of such small
effects becomes more salient in non-desktop applications. As
GUIs propagate to places such as automobiles and hospital
emergency rooms, small differences in time and/or accuracy
of visual search are enormously magnified. Consider the case
of on-board displays in automobiles, or mobile phone use
while in an automobile. A car traveling at 55 mph moves
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about 80 feet in one second. Thus, a display which takes one
second longer to search is an extra 80 feet where the driver is
not watching the road or monitoring the actions of other
drivers.

As Byrne [3] has shown, all icons are not equal. Simple icons
can act as much better search guides than can complex ones,
especially as the number of icons displayed increases. Thus,
the quality of an icon can be judged by its distinctiveness and
complexity. Fleetwood and Byrne [7, 8] and Fleetwood [6]
(from here referred to as F&B) found that different quality
icons produce different types of visual search strategies. With
high quality icons, people can identify clusters of icons
preattentively. People tend to search first within such groups
and not conduct a general search using a simple strategy such
as a left-to-right search.

Byrmne [3] attempted to identify factors that might influence
the speed of visual search in mixed text/icon displays, such as
displays of files and folders. These include a number of non-
visual (e.g., the amount the user knows about the target) as
well as visual factors. HCI researchers and/or experimental
psychologists have not systematically explored most of the
non-visual factors. However, there is a considerable literature
on how visual factors such as target size and color affect
visual search times in non-icon contexts. Prominent reviews
and theories can be found in Treisman and Gelade [16] and
Wolfe [18]. In general, as the number of items on a display
increases, the time to search the display for a particular item
increases in a linear fashion. The critical measure of the
quality of a target and distractor set is the slope of that line.

Essentially, what the visual literature has shown is that visual
search can be “guided” by certain visual features such as
color. When a target can be differentiated from distractors by
a single visual feature, it is possible to find the target in
constant time regardless of the number of distractors. For
example, if the target is green and all the distractors are red,
the number of red distractors does not matter, so the search
slope is zero. For more complex searches, such as searches of
real computer displays, the slope will be nonzero. However,
better icon design, informed by knowledge of visual search
processes, should yield shallower slopes, as shown in [3,6,
7,8].

F&B took this notion one step further and constructed
computational cognitive models to simulate users performing
searches of mixed icon/text displays. These models used
ACT-R 5.0, a cognitive architecture for simulating and
understanding human cognition that combines a model of
cognition with perceptual-motor capabilities [1, 4]. In the
final F&B model, ACT-R uses a visual feature of the target to
locate potentially matching icons, but directs attention to the
label and does not attend directly to those icons during search.

Visual attention is only directed to the icon itself after the
target has been identified, as participants must attend to the
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icon to be able to click on it. Once the model determined that
the label on which attention was focused was not the target, it
looked for the one nearest to the current icon that has the
same features as the target icon. Using this model, F&B were
able to obtain predictions that closely matched their
experimental data (R* = 0.98, mean absolute error = 3.19%).

This model is obviously highly dependent on ACT-R’s visual
system, which is a feature-based attentional system that
includes EMMA. EMMA is an eye-movement model that
integrates eye movements, visual attention, and cognitive
processes [11]. EMMA uses the following equation to predict
the time T, needed to encode an object i:

T,ppe = Ko[-log f;]e e*€i

where f; is the frequency of the object represented with a
probability between 0 and 1; g; is the eccentricity of the
object, measured in units of visual angle as the distance
between the current eye position and the object; and K and k
are constants [11].

This is relevant because the F&B model, based on the EMMA
equation above, predicts that the spacing between objects
should affect how rapidly they can be searched. This model
predicts that smaller spacing should yield shorter search
times, because wider spacing will cause longer encoding time
for individual visual objects.

Experimental results relevant to this prediction have been
mixed. Counter to this prediction, increasing the screen
density (the proportion of the screen displaying information)
has been shown to increase search times in some laboratory
studies [5,14,15]. In Cohen and Ivry’s study [5], search times
for a conjunctively defined target were longer when the space
between distractors was smaller. They proposed that this
occurred because there are two feature integration
mechanisms that operate at different speeds. The fast
mechanism codes an object’s coarse location information with
the initial registration of its visual features. This mechanism
cannot operate when objects are located close to each other
and so a slower focal attention mechanism must be used [5].

Other studies, however, have shown that decreasing screen
density by spreading out display objects does not always lead
to better performance, especially when presenting large
amounts of information. Staggers [13] found that in a hospital
information system, user performance was best when all
relevant information could be seen on one screen. In a
simulated power plant control system, Burns [2] found that
problems were detected more quickly and accurately using a
one-screen, dense display. The advantage gained in both of
these studies, however, may not apply to general visual
searches because the advantage was preventing the need to
look at multiple pages of information.
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The effects of the physical structure of a computer screen
layout on visual searches were examined by Hornof [10].
Hornof looked at two different of layout structures: labeled
visual hierarchies and unlabeled visual hierarchies. Labeled
visual hierarchies produced much faster search times than did
the unlabeled ones because the labels directed attention to the
group most likely to contain the target. Hornof also found that
people use slower and more accurate strategies to select a
target when distractors are present. Additionally, people are
more careful when selecting the target if there are other
objects near the target, indicating that spacing between items
may play a role in visual search and selection tasks.

Many studies have examined the effects of separating visually
presented objects into groups. Tullis [17] even gives
guidelines for how information should be arranged into
groups. As previously mentioned, Hornof [10] looked at the
effects of visual hierarchies and concluded that appropriate
labels for groups do improve search times. Treisman [15]
studied grouping effects on attention in visual searches for
features and objects. In this study, because items could be
grouped by features preattentively, attention was given to
entire groups instead of individual objects. This should
happen when the visual search is for some combination of
features, making the search serial. Treisman found that
grouping did indeed occur preattentively because groups and
not objects were scanned serially. In searches for a single
feature, grouping effects did not appear, suggesting that
features were detected preattentively. This study showed the
important effects that grouping can have on visual searches.

So, while a variety of spatial effects have been studied, the
mixed results of those experiments and the indirect mapping
of those results to mixed icon/text displays points to the need
for further study. Experiment 1 was designed to explicitly
assess the F&B model’s ability to predict effects of spacing,
that is, the distance between the icons on the display.

EXPERIMENT 1

Method

Participants

Participants were 46 undergraduates at Rice University who
received course credit for their participation. These
participants had at least some prior computer experience and
many were experienced users.

Design

The experiment was a within-subjects design and had three
independent variables. These were set size, icon quality, and
spacing. Set size had four levels with 6, 12, 18, or 24 icons
displayed in the search task window.
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Figure 1. Examples of icons in three qualities: good, fair, and
poor.

Icon quality had three levels: good, fair, and poor. “Good”
quality icons were solid circles or triangles shown in red,
blue, green, yellow, brown, and black. “Poor” icons consisted
of many shapes and lines combined to form complex images
and were hard to distinguish from each other. These icons
were presented in grayscale. “Fair” icons were relatively
simple images that represented some identifiable object.
These icons were also shown in grayscale. Figure 1 gives
examples of icons used in the study. These icons were the
same as those used in the F&B work, and in terms of the
ACT-R model differed in the amount of overlap between
primitive features. For example, “green triangle” is perfectly
predictive in the “good” icon condition because no other icons
contained green triangles. However, “gray rectangle” is a very
common feature within the “poor” set, so using that feature to
guide visual search will often yield icons that do not match
the target being sought. Icon labels were randomly selected
from a list of 750 words of comparable length.

Spacing had three levels: small, medium, and large. In the
small condition, icons were 32 pixels apart. Participants were
approximately 15 inches from the screen. At this distance, the
32 pixels between icons in the small condition translated into
a visual angle (VA) of 1.6°. Figure 2 shows an example of
icons displayed in this arrangement. In the medium condition
the icons were 64 pixels apart (VA = 3.2°) and in the large
condition the icons were 96 pixels apart (VA = 4.8°). Figure 3
gives an example of icons displayed with large spacing.

A o o

wachting traditions  groundwork chimera
trivia WAGANCY lagging wartinne
rhapzody proclainm licarice catalog

Figure 2. Example of icons displayed in the small spacing
condition.
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Figure 3. Example of icons displayed in the large spacing
condition.

Each independent variable was examined at every level of the
other independent variables, yielding 36 trials per block (3 x 4
x 3 = 36). The order of presentation within a block was
randomized.

In this experiment, response time was the primary dependent
variable, measured from when the participant clicked the
“Ready” button to the time when the participant clicked on an
icon in the display.

Materials

The computers used to run the experiment were Apple
Macintosh iMac personal computers. Display resolutions
were set at 600x800. Icons were standard size icons (32 pixels
x 32 pixels).

The “Ready” button was set to appear in a location calculated
to be the average center of all the icon display windows.

Procedure

Participants were presented with instructions and then a
practice block to allow them to become comfortable with the
task. After the practice block, participants completed four
experimental blocks of trials.

In each trial, participants were presented with one icon and a
randomly selected word as the file name (the target). Shortly
thereafter, a “Ready” button appeared in the upper left section
of the screen. Once they felt they had sufficiently examined
the target icon, participants clicked the “Ready” button to
proceed to the next phase of the trial. Participants were then
presented with a window containing 6, 12, 18, or 24 icons in a
grid pattern. The target icon with target label appeared among
the distractors in every trial.

The search was a self-terminating mixed search involving
both visual and semantic searches, as targets were identified
by icon and also by file name. One-third of the icons
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Figure 4. Mean Response Times by Set Size and Quality

displayed in the search task window matched the target icon,
but only a single icon had a matching file name label.
Matching icons were used to more closely imitate real-world
situations in which there are often multiple instances of an
icon on a display, such as document icons in a folder. For this
same reason, the icons were arranged in a grid formation,
such as occurs with the “lock-to-grid” feature many operating
systems support. The location of the target within the window
was randomized, and the participant searched for and clicked
on the target icon. This ended the trial and a new one began.

Results

Mean response times for participants are presented as a
function of quality and set size in Figure 4. From this figure,
it is apparent that as the set size increased and quality
decreased, search time lengthened. Replicating F&B’s results,
the main effects of set size and quality were both statistically
reliable, F(3, 135) = 607.90, p <.001 and F(2. 90) = 278.33, p
< .001, respectively, as was the interaction between set size
and quality, F(6, 270) = 34.90, p <.001.

However, the goal was not to simply replicate those effects,
but to assess the effects of spacing. In Figure 5, response
times are displayed as a function of spacing. As the space
between icons increased from small to medium to large,
search times increased. This was confirmed by a reliable main
effect of spacing, F(2, 90) = 7.267, p <.001. Contrary to what
we expected, there was no interaction of set size and spacing,
F(6, 270) = 0.61, p = 0.73, or of quality and spacing, F(4,
180)=1.88,p=0.12.

While statistically reliable, this spacing effect was small in
absolute terms; the difference between large and small
spacing was only about 150 ms. However, spacing may have
affected user behavior in a more dramatic way. The small
spacing condition used here was essentially a replication of
the conditions in the F&B experiments. Therefore, response
times should have been comparable across the two
experiments. However, comparisons of the data from these
two studies show that the participants in the current
experiment were much slower on average than were
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Figure 5. Mean Response Times by Spacing for Experiment 1

participants in the F&B study. Figure 6 shows the mean
response times by set size and quality for the two
experiments. Because the users in the two experiments came
from the same population and the two experimental
conditions are the same, one possible explanation for the
difference is that the participants in Experiment 1 adopted a
new, less efficient search strategy.

This type of strategy change as a result of small differences in
the task has been observed before in HCI contexts. The kind
of “strategy” referred to here is not necessarily a conscious
decision on the part of users, but refers to the way low-level
perceptual-motor activities are coordinated by users to
accomplish their task. Gray and Boehm-Davis [9] refer to
these as “microstrategies.” Our data suggested that our users
were changing microstrategies.
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Set Size

Figure 6. Mean Response Times by Set Size and Quality for F&B
and the Smallest Spacing Condition in Experiment 1
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MODELING THE EXPERIMENT

Model 1

Our initial model for the experiment was the F&B model,
modified very slightly only to make it compatible with the
current 5.0 version of ACT-R. This model uses a very
efficient search strategy, where shifts of visual attention move
from one text label to the next, guided by the nearest icon
with a feature matching the target. This model has thus been
named the “text-look” model.

No numeric parameters or productions were modified for this
model, so this represents a true zero-parameter prediction.
Because certain aspects of the model are stochastic, the model
was run for 100 blocks of trials.

Comparison of Model 1 Predictions to Data from
Experiment 1

In Figure 7, the response times of participants and those
predicted by the model are displayed by set size and quality,
while Figure 8 displays the model and data by spacing.

The effects of set size and quality predicted by the model
match the experimental data in direction, as do the predictions
for the effects of spacing. However, for all set sizes, qualities,
and spacings, the model predicted that participants would
complete the task more quickly than they did, especially for
the larger set size and lower quality icons.

Although this model predicted response times that matched
the qualitative trends of the experimental data, it did not

5000
4500
4000
§3500 1
P |
E 3000
=2500
2
£ 2000 +
2 — — — —0— —Model 1- Fair
é 1500 == Model 1- Good
1000 | — —A— —Model 1- Poor
—&——Expl - Fair
500 | Expl - Good
. —a&—Expl - Poor
6 12 18 24

Set Size

Figure 7. Mean Response Times by Set Size and Quality for
Model 1 and Experiment 1

Volume 6, Number 1



CHI 2004 | Paper

OExpl
HModel 1

Small Medium

Spacing

Large

Figure 8. Mean Response Times by Spacing for Experiment 1
and Model 1

provide a particularly good fit quantitatively. Comparing the
set size by quality interaction in Experiment 1 and Model 1
produced R* = 0.96 with a 16.03% mean absolute error, while
for the spacing effect, R*> = 0.99 and 16.86% mean absolute
error. While this is not bad for a zero-parameter fit, the
systematic under-prediction of the model suggested to us that
users may have adopted a less efficient search strategy. Model
2 was given a different search strategy and was run to explore
this possibility.

Model 2

In this model, the “double-shift” model [8], two shifts of
attention are required to examine each icon in the display. The
first one shifts attention to any icon that has features matching
those of the target icon. The second attention shift is to the
file name located beneath that icon. If this file name matches
the target file name, attention shifts back to the icon so it can
be clicked on. If the file name does not match that of the
target, the search process begins again to find another icon
with the same features as the target. In addition, this version
of the model did not enforce the constraint that the next icon
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0 .

12 18
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Figure 9. Mean Response Times by Set Size and Quality for
Experiment 1 and Model 2
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Figure 10. Mean Response Times by Spacing for Experiment 1
and Model 2

examined be the icon nearest the current fixation, as was done
for Model 1. This was the only change made to the model; all
other parameters were kept constant.

Comparison of Model 2 Predictions to Data from
Experiment 1

Model 2 produced a much better fit with the experimental
data than did the Model 1. This was true both for quality and
spacing effects. The response times of participants and those
predicted by Model 2 are displayed by set size and quality in
Figure 9.

The response time differences due to spacing from the
experimental data and Model 2 are shown in Figure 10. Here,
Model 2 also produced a much better fit with the
experimental data than did Model 1.

Comparing the set size by quality interaction in Experiment 1
and Model 2 produced R* = 0.95 with a 9.53% mean absolute
deviation. For the set size main effect, the comparison of
Experiment 1 and Model 2 yielded R* = 0.97 and 9.98% mean
absolute deviation. Obviously, this model fit the experimental
data better than the original model. It still somewhat under-
predicts times for the “poor” icons, but is much closer for the
other two conditions.

Based on the differences between the F&B results and
Experiment 1, and guided by the model, we believe that this
spacing manipulation caused an actual change in visual search
strategy. When the spacing between icons varied between
trials, participants used a much less efficient search strategy.
Experiment 2 was performed as an explicit between-subjects
assessment of this apparent strategy change.

EXPERIMENT 2

Method

The design, materials, and procedure for Experiment 2 were
almost identical to those in Experiment 1. The difference here
was that participants were randomly assigned to one of two
groups. The VS (“variable spacing”) group had 20
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participants for whom the experiment was identical to that of
Experiment 1 (the spacing between icons still varied between
small, medium, and large conditions). The other group, FS
(“fixed spacing”), had 12 participants for whom the
experiment was the same as that in Experiment 1, except that
the small spacing between icons was always used (no spacing
changes).

Results

While data was collected from the VS group on larger
spacing, we only report results from the smallest spacing
used, where the displays participants saw were functionally
identical to those in the FS group. That is, there is no
difference in the stimuli between the VS and FS groups for
the reported comparisons.

The usual effects of set size, F(3, 90) = 172.41, p < .001,
quality, F(2, 60) = 123.91, p < .001, and their interaction, F(6,
180) = 12.40, p <.001 were replicated.

Of more interest is how these results compared to the F&B
results and to Experiment 1. Figure 11 shows the mean
response times by set size and quality for F&B and the FS
group of Experiment 2. Overall, this was a fairly good
replication of the original results.

Most critical to the current discussion are the results of the VS
vs. FS group manipulation. Since the displays seen were
effectively identical, but the VS group also saw displays with
wider spacing, any differences between the groups must be a
result of differences induced by the VS users’ exposure to
wider spacing conditions. Figure 12 shows mean response
times for each group by set size and quality. Between-group
differences for the “good” icons are not large, but they are
greater for the “fair” icons and quite substantial for the “poor”
icons. This was reflected in a reliable quality by group
interaction, F(2, 60) = 5.86, p=0.005, as well as a reliable
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Figure 11. Mean Response Times by Set Size and Quality for
F&B and for the FS group of Experiment 2
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Figure 12. Mean Response Times by Set Size, Quality, and
Group for Experiment 2

search slope by group by quality interaction, F(2, 60) = 4.70,
p = 0.013. Thus, we can conclude that the larger spacing
conditions seen by the VS group caused them to slow down,
even on the more closely-packed displays. We think it
unlikely that exposure to wider spacing changed their basic
cognitive or perceptual abilities, and so suggest that these
users adopted an inferior search strategy, particularly for the
“poor” icons.

GENERAL DISCUSSION

First, these results replicate the Fleetwood and Byrne work [6,
7, 8] by showing icons with varying degrees of feature
overlap produce different search slopes. However, this was
neither the primary intent nor the most interesting finding.

What we found is that varying the spacing between icons does
indeed increase search times, as predicted by the ACT-R
model. However, it does not do so in the way that we
expected. Users in Experiment 1 were substantially slower
than we expected or than was predicted by the original ACT-
R model. This suggested to us that when the amount of
spacing changed, participants employed a different search
strategy to find the target icon. This strategy change had a
fairly dramatic time cost associated with it, and indeed giving
the ACT-R model a less efficient search strategy produced a
closer fit to the experimental data. The findings from
Experiment 2 replicated this increase in search time as a
function of spacing, strongly suggesting a search strategy
change when the spacing between icons changed. By using
the two models we were able to produce a close fit with the
data from both spacing conditions. However, it would be
better to have one model that switches the search strategy
itself. Future work will attempt to address this issue.

It is unclear whether it was the presence of trials with large

spacing intermixed with trials of small spacing or simply the
variability of the spacing between trials that caused this
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effect. Further work will need to be done to distinguish
between these two possibilities. Furthermore, it is not clear
exactly why wider spacing or a change in spacing would
produce a strategy change. While the ACT-R model with the
less efficient strategy approximately captures the magnitude
of the effect, it does not provide insight into why users would
make this change in strategy, as the model is perfectly capable
of executing the more efficient strategy in the wider spacing
situations. Both of these are potential areas of future research,
as is eye-tracking to more concretely confirm this strategy
switch and to gain a better sense of exactly what strategies
users are employing. Based on our own intuitions and the
ACT-R model, we had no a priori reason to expect such a
difference.

The strategy change found in these experiments highlights the
importance of understanding how the visual layout of a
computer screen affects the eye movements that control the
visual search process. Subtle manipulations can have
surprisingly large impacts on overall performance; in
Experiment 2 at the largest set size, users in the VS condition
were almost 20% slower than users in the FS condition. We
submit that most display designers (ourselves included) would
not have foreseen the magnitude of this effect. When one
considers high-risk environments such as automobiles or even
how many times per day most users search for icons on
computer screens, it is easy to see how this could have a
substantial impact on safety and productivity.
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