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Abstract

Because of the visual nature of computer use, researchers and designers of com-
puter systems would like to gain some insight into the visual search strategies of
computer users. Icons, a common component of graphical user interfaces, serve
as the focus for a set of studies aimed at (1) developing a detailed understanding of
how people search for an icon in a typically crowded screen of other icons that
vary in similarity to the target, and (2) building a cognitively plausible model that
simulates the processes inferred in the human search process. An eye-tracking
study of the task showed that participants rarely refixated icons that they had pre-
viously examined, and that participants used an efficient search strategy of exam-
ining distractor icons nearest to their current point of gaze. These findings were
integrated into an ACT-R model of the task using EMMA and a “nearest” strat-
egy. The model fit the response time data of participants as well as a previous
model of the task, but was a much better fit to the eye movement data.
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1. INTRODUCTION

In graphical user interfaces, icons (small graphical images that represent
files and commands and are often accompanied by labels) are becoming in-
creasingly prevalent. Still common on desktop computers, the technology is
popping up in a variety of new locations, including mobile telephones, auto-
mobile navigation systems, kiosks, handheld computers, and so on. An un-
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derstanding of how users search for icons would be of use to system designers
and researchers. Further, the evaluation of future systems would benefit from
a model capable of making a priori predictions of user performance in
icon-based displays. The research presented here focuses on two issues: one,
developing a detailed understanding of how a person searches for an icon in a
typically crowded screen of other icons that vary in similarity to the target;
and, two, building a cognitively plausible model that simulates the processes
inferred in the human search process.

Much of the early success of cognitive engineering in the human–com-
puter interaction (HCI) field was in examining the efficacy of different de-
signs by using cognitive models to predict task performance times (e.g.,
Gray, John, & Atwood, 1993). In this respect, laboratory research and in-
dustry benefited from the Model Human Processor, the Keystroke Level
Model, and the GOMS family of techniques (Card, Moran, & Newell,
1983; John & Kieras, 1996). One deficiency of such models has been their
inability to take into account the triad of elements involved in an HCI task.
As noted by Gray and Altmann (2001), the study of HCI should ideally in-
clude the study of a triad of elements—the user, the task at hand, and the
artifact employed in the task. To this end, the HCI field has seen the devel-
opment of modeling architectures capable of incorporating the complete
triad of elements. EPIC (Kieras & Meyer, 1997) and ACT-R/PM (Byrne &
Anderson, 1998; now integrated into ACT-R 5.0; Anderson et al., 2004)
were developed to include the cognitive, perceptual, and motor aspects of
the users as they interact with the task environment. Additional strides have
been made in allowing the modeling architectures to interact with the same
software as that of human users (Ritter, Baxter, Jones, & Young, 2000), fur-
ther integrating the task and artifact elements of the triad with cognitive
models.

Now that all three elements of the triad can be studied in the context of
cognitive modeling, we must ensure that the models interact with the environ-
ment in a humanlike way. This has long been a barrier to the acceptance of
cognitive engineering techniques by the wider HCI community. The tradi-
tional measures of response time and accuracy, though valuable, are only two
metrics of interaction between human and computer.

The studies presented here are aimed at ultimately enabling the develop-
ment of a simulated human user (Ritter et al., 2000; Young, Green, & Simon,
1989) capable of interacting with graphical user interfaces in a cognitively
plausible manner. Specifically, the focus is on how the design of interface ob-
jects, icons in this case, affect low-level processes governing visual attention,
which in turn affect what are typically considered to be higher-level processes
of search strategy. By choosing a relatively complex visual environment to
study, we hope to bring to bear some of the established research in the field of
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visual search on an HCI problem and on the modeling architecture em-
ployed, ACT-R 5.0.

We have divided this article into six sections. First, we discuss some of the
relevant research in visual search as it relates to an HCI context. Second, we
provide a brief overview of the ACT-R 5.0 cognitive architecture, giving par-
ticular weight to the aspects of the system involved in simulating human vi-
sion. Third, we describe the general methodology used in our experiments.
Section 4 provides a brief summary of a previous set of experiments and
ACT-R models of the task. Section 5 presents an eye-tracking study of the
task, and Section 6 describes a new model based on the results of the
eye-tracking study.

1.1. Relevant Visual Search Literature

The typical graphical user interface represents a complex visual environ-
ment relative to what has typically been examined in visual search studies.
Nonetheless, many of the basic findings in human visual search are applicable
to the domain.

Paradigm

In a standard visual search experiment, the observer is looking for a target
item in a display containing some number of distracting items (Wolfe, 2000).
The participant is typically asked to determine if a target object is present or
absent on the display. Efficiency of a visual search can be assessed by looking
at changes in response time (RT) or accuracy as a function of changes in the set
size, the number of items in the display. The search paradigm is valuable be-
cause performance on these tasks varies in a systematic manner with the na-
ture of search stimuli. For example, search for a red object among a set of
green objects is fast and accurate regardless of the number of green objects.
The slope of the RT Set Size function will be near zero. For tasks in which the
target is not so easy to discriminate from the distractors, RT is roughly a linear
function of set size.

This paradigm is attractive in the context of studying icons, in part because
it brings a common HCI experience into the laboratory (McDougall, De
Bruijn, & Curry, 2000). Computer users frequently must search for a desired
object in a graphical user interface. Examples might include the search for a
particular icon on a toolbar or formatting palette, locating a button in a Web
page or application, finding an icon representing a command in a menu, or
searching for a particular file or application in a directory containing other
files or applications.

156 FLEETWOOD AND BRYNE



Preattentive Search Effects

In an efficient search, such as a search for a red item among green items,
the subjective experience is that the target effectively pops out from its sur-
roundings. Searches where targets can be distinguished from distractors on
the basis of a single basic feature, such as color, motion, or orientation, are
characterized as efficient or parallel searches. These efficient searches are also
known as preattentive searches, because the information gleaned from the envi-
ronment before visual attention has been directed to areas in the visual scene
(preattentive information) is sufficient to guide search. As the target becomes
less discriminable from the distractors, the search becomes less efficient and
more serial in nature. On the inefficient end of the continuum, items in the
distractor set must be examined individually so that the target can be located.
An intermediate level of search efficiency would require that only a subset of
items be examined so that the target can be located.

An important class of search tasks producing searches of intermediate effi-
ciency is conjunction searches, where features and targets are distinguishable only
on the basis of a conjunction of several different features. For example, in a
search for a red X among green Xs and red Os, the target is distinguishable only
byaconjunctionofcolorand form.Neithercolornor formalonedefines the tar-
get. Conjunction searches were originally thought to lie toward the extremely
inefficient end of searches, where all items that shared any features with the tar-
get must be examined in a serial self-terminating fashion (Treisman & Gelade,
1980). It appears that this claimis toostrong (Wolfe, 1994,2000).Asmentioned,
studies have shown that search could be restricted to subsets of the items—sub-
sets defined by features such as color (Egeth, Virzi, & Garbart, 1984). Other
studies showedthatmore thanone featureata timecouldcontribute to theguid-
ance of conjunction search (e.g., Alkhateeb, Morland, Ruddock, & Savage,
1990; McLeod, Driver, Dienes, & Crisp, 1991; Nakayama & Silverman, 1986;
Treisman & Sato, 1990; Wolfe, 1992).

In searches where subsets of items, not just a single item, may be pre-
attentively identified and selectively searched, the search time may be a func-
tion of the number of items in the subset. For instance, in a search for a green
T amid green L and red T distractors, the search may be a function of the
number of green items on the display. In this case, the entire subset of green
items can be selectively searched. The evidence supporting this assumption
comes from a number of visual search studies (Carter, 1982; Green & Ander-
son, 1956; Smith, 1962) and a theoretical model of how such searches might
occur, the Guided Search model (Wolfe, 1994; Wolfe, Cave, & Franzel, 1989).

When a subset of items may be preattentively identified and selectively
searched, a pattern of results known as the distractor ratio effect is revealed (Ba-
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con & Egeth, 1997; Poisson & Wilkinson, 1992; Shen, Reingold, & Pomplun,
2000; Zohary & Hochstein, 1989). The distractor ratio effect describes when
the ratio between different types of distractors in a conjunctive search task
strongly influences the response times in detecting a target item. For instance,
participants were asked to decide whether a conjunctively defined target was
present or absent among distractors sharing color or shape. When the total
number of items presented in a display was kept constant, response times var-
ied as a function of the ratio between the two types of distractors, those shar-
ing color and those sharing shape with the target. More specifically, response
was faster when either type of distractor was rare than when both types of
distractors were equally represented. For example, if the target was a red X,
response was fastest when the distractors were primarily composed of red Os
or green Xs and slowest when there was an equal amount of red Os and green
Xs. More explicitly, if the distractors were primarily green Xs, participants
could restrict their searches to the red items in the display. In addition, the
saccadic selectivity of participants was greatest at these extreme distractor ra-
tios—that is, participants’ searches were guided by the feature of the target
(color or shape) that was common with the fewest number of distractors. This
indicates that detecting a conjunctively defined target does not necessarily re-
quire a serial item-by-item search, which would not produce the distractor ra-
tio effect. Shen et al. (2000) found that the observed changes in RT due to the
distractor ratio were echoed by eye-movement measures, such as the number
of fixations per trial and latency to move.

The distractor ratio effect is predicted by the Guided Search model (Wolfe,
1994; Wolfe et al., 1989; Wolfe & Gancarz, 1996), which argues that informa-
tion extracted preattentively can guide shifts of attention during the search
process. According to this model, the preattentive information encompasses
both bottom-up activations (extrinsic, driven by the environment) and
top-down activations (intrinsic, driven by the perceiver). These sources of in-
formation are combined to form an activation map, which contains peaks of ac-
tivity at likely target locations (Wolfe, 1994). The focus of attention is directed
serially to the locations with highest activation until the target is found or the
criterion to make a negative response is reached. When participants are al-
lowed to move their eyes, a saccade map is similarly created to guide the move-
ments of the eyes (Wolfe & Gancarz, 1996). Every 200–250 ms, the eyes are
moved to the point of highest activation in the saccade map.

The guided search model is based on research in a number of controlled
laboratory visual search experiments. However, although similar in many re-
spects, the visual environment that people normally interact with in HCI con-
texts is more complex. There is a long history in HCI of extending
well-researched paradigms and theories to slightly more complex environ-
ments in an effort to generalize the theories and extend their domains. Thus,
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the theories developed under carefully controlled conditions are incre-
mentally evaluated in slightly more complex task environments. The re-
search presented here extends some of the predictions of the guided search
model—specifically, that of being able to locate multiple stimuli pre-
attentively—to a slightly more complex environment that is closer to the en-
vironment experienced by everyday computer users.

Research on icons confirms that the aforementioned research on visual
search applies to more complex environments and stimuli. McDougall, de
Bruijn, and Curry (2000) found three characteristics to be of primary impor-
tance in the measurement of symbols and icons: concreteness, distinctive-
ness, and complexity. Of the three, distinctiveness and complexity are most
relevant to the visual search literature. Distinctiveness cannot be assessed in
isolation; it is contingent upon the nature of the visual display in which an
icon is located. Generally, the more distinct an icon is from its surroundings
the quicker it can be located. With regard to complexity, the amount of detail
or intricacy within an icon was found to influence the rate at which it could be
detected, with very simple or very abstract icons being detected faster. With
respect to locating icons on a computer display, Byrne (1993) found that when
users were asked to carry out a search task, they were able to locate simple
icons faster than more complex icons. This was attributed to the concept that
simple icons were discriminable on the basis of only a few features relative to
more complex icons, and this ease of discriminability aided users in their
search.

1.2. ACT-R 5.0

A cognitive architecture is both a theory of human cognition and perfor-
mance and a framework for developing computational models of behavior.
Cognitive architectures have been used widely to model human behavior
(Anderson & Lebiere, 1998; Newell, 1990) and, more specifically, HCI (e.g.
Altmann, 2001; Anderson, Matessa, & Lebiere, 1997; Byrne, 2001; Kieras,
Wood, & Meyer, 1997; Kitajima & Polson, 1997; Ritter et al., 2000). Cognitive
architectures provide at least two major benefits for the purposes of the pro-
posed approach. First, architectures incorporate well-tested parameters and
constraints on cognitive and perceptual–motor processes, and any model de-
veloped in an architecture necessarily inherits these parameters and con-
straints. This allows architectural models to generate a priori predictions
about behavior and performance (Salvucci & Macuga, 2002). Second, these
predictions are inherent in the model yet separate from the modeler. The ad-
vantage here is that any analyst can run the model with the same outcome
(Gray & Altman, 2001). Thus, the model is not limited to a particular re-
searcher or project.
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The system that was used to model the experiments was ACT-R 5.0. The
ACT-R architecture has been used to successfully model a variety of behav-
ioral phenomena and has proven particularly successful at modeling tasks
with a demanding cognitive component (for a thorough description and dis-
cussion of the ACT-R framework, see Anderson & Lebiere, 1998). In ACT-R
5.0 (Anderson et al., 2004), among other changes made to the architecture,
the original system has been combined with modules for perceptual and mo-
tor actions (vision, audition, motor, and speech; see Byrne & Anderson, 1998,
chap. 6, for a discussion of the functioning of the different modules; see also
Byrne, 2001; Byrne & Anderson, 2001). Because icon search is relatively light
on the cognitive demands of the user, it is a task that must be modeled using
an architecture that accounts for the perceptual and motor components inher-
ent in the task—that is, directing visual attention in a relatively complex vi-
sual scene. Other researchers have employed cognitive architectures, includ-
ing ACT-R (Byrne, 2001) and EPIC (Hornof, 2001; Hornof & Kieras, 1997) as
part of their investigation of the visual search of menus. This research extends
the methodology to a more complex visual environment.

ACT-R System Configuration

ACT-R is a computational theory of cognition and human performance.
The system is organized as a set of modules that interact with two types of
memory: procedural memory and declarative memory (see Figure 1). The
declarative memory contains chunks of things remembered or perceived.
These chunks can be facts such as “2 + 1 = 3”; intentions or goals; or, as is
the case of the icon search models presented here, a collection of informa-
tion about the visual environment. There is also a production (or proce-
dural) memory that contains the procedures and skills necessary to achieve
a given goal. The units of procedural memory are production rules,
IF–THEN condition–action mappings that “fire” when the conditions are
satisfied and execute the specified actions. The conditions are matched
against a set of buffers whose content is determined by a series of modules.
The perceptual–motor system is made up of modules that handle various
aspects of perception (visual and auditory) and action (motor and speech).
There is also a module devoted to retrieving information from declarative
memory.

Communication between central cognition and the modules takes two
forms. Each module has one or two buffers that may contain one chunk. The
production system can recognize patterns in these buffers and indirectly
make changes to these buffers—by requesting that the module perform an ac-
tion, such as shifting visual attention, making a key press, or requesting the re-
trieval of a chunk from declarative memory.
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The basic computational increment is the production cycle, which consists
in matching productions against memory, selecting a production to fire, and
then executing the THEN side of the selected production. The IF sides of the
production rules are matched against the contents of declarative memory and
the contents of the buffers. One of the productions that has its conditions
matched is selected to fire. Only one production rule may fire per cycle.

The Vision Module

Given the visual nature of graphical user interfaces, the Vision Module is
of key importance in modeling many HCI tasks. As one might expect, the Vi-
sion Module is used to determine what ACT-R “sees.” Each object on the dis-
play is represented by one or more features in the Vision Module. These fea-
tures are simply a symbolic list of attribute pairs that represent the visual
attributes of the objects on the display, such as “red circle.” The modeler car-
ries out the parsing of the display into objects and the creation of the list of at-
tribute pairs representing each object. The Vision Module creates chunks
from these features that provide declarative memory representations of the
visual scene, which can then be matched by productions. The Vision Module
is organized around two subsystems, a where system and a what system.
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When a production makes a request of the where system, the production
specifies a series of constraints, and the visual location buffer returns a chunk
representing a location meeting those constraints. Constraints are attrib-
ute–value pairs, which can restrict the search based on visual properties of the
object (such as “color: red”) or the spatial location of the object (such as
“screen-y greater-than 153”). This is akin to so-called preattentive visual pro-
cessing (Treisman & Gelade, 1980) and supports visual pop-out effects. We
take advantage of this capability in modeling the different levels of icon qual-
ity observed in the experimental data, particularly with respect to the good
quality icons.

A request to the what system entails providing a chunk representing a vi-
sual location, which will cause the what system to shift visual attention to that
location and process the object located there—that is, deposit a chunk repre-
senting the visual object at that location into the visual object buffer. In the
base system of ACT-R, this shift of visual attention takes 135 ms of simulated
time, 50 ms for a production to fire, and 85 ms to make the shift of visual at-
tention and process the object.

It is important to note that ACT-R 5.0 does not make any predictions re-
garding eye movements. The system may be used to predict shifts of visual at-
tention, but it has been well-established that there is not a direct correspon-
dence between unobservable attention shifts and observable eye movements
(Henderson, 1992; Rayner, 1995).

The Motor Module

Other than account for visually locating objects, our models must also ac-
count for selecting the icons with the mouse. In executing a movement, it
must first be prepared by the motor module (unless the movement is a repli-
cation of the prior movement, in which case there is no preparation time).
The time to prepare the movement is at least 50 ms and ranges upward de-
pending on the movement (button press or mouse movement). Once the
movement has been prepared, the amount of time that a movement takes to
execute depends on the type and possibly the size of the target object and dis-
tance that the movement will traverse. Simple movements have a minimum
execution time (also 50 ms, called the burst time), and more complex move-
ments (such as pointing with the mouse) have a longer execution time based
on Fitts’s law.

2. GENERAL PROCEDURES

The experiments presented here are a replication of a set of experiments
reported in Fleetwood and Byrne (2002). The experimental paradigm is
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nearly identical for all of the experiments discussed in this article. A Methods
section is provided here, and any deviations from this general template are
specifically noted in the discussion of the individual experiments.

Three independent variables were manipulated, all of which were
within-subject factors. The first of these factors, set size, had four levels, in-
cluding 6, 12, 18, or 24 icons. The second within-subjects factor, icon quality,
had three levels. Icons were designed that varied in their levels of distinctive-
ness and complexity. On one end of the spectrum were icons of “good” qual-
ity. These icons were designed to be easily distinguishable from other icons
based on the primitive visual (i.e., preattentively discriminable) features of
color and shape (specifically, curvature). Icons in the good quality set were
one of six colors (red, blue, green, yellow, brown, black) and one of two
shapes (circle, triangle). Examples are shown in Figure 2. On the other end of
the quality spectrum were icons that were not easily distinguishable (referred
to as “poor” quality icons). They were designed to be discriminable through
relatively careful inspection when explicitly paired but relatively indistin-
guishable in a large distractor set. These poor quality icons were all of the
same basic shape and did not include color (other than white, black, and
shades of gray). The “fair” quality icons were designed to be representative of
the area in between these two ends of the spectrum. They were generally of a
distinct shape, although more complex than the simple circles and triangles in
the good quality icons, and none of them contained any color outside of the
spectrum of grayscale colors.

Icon quality, as it is defined here, encompasses a number of separate,
dissociable attributes that contribute to the ability of participants to locate an
icon quickly among a set of similar icons. The attributes identified by
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were shown with different types of borders; however, there was no evidence that the
borders had any effect on search performance (Fleetwood, 2001).



McDougall, Curry, and De Bruijn (1999) and McDougall, De Bruijn, and
Curry (2000) that apply to the icons used here are those of distinctiveness and
complexity. To quantify the levels of complexity and distinctiveness of our
icons, a separate study was conducted in which 22 participants rated each of
the icons on these two attributes. Regarding complexity, participants were
asked to rate the amount of detail or intricacy of line in the image (1, very sim-
ple; 5, very complex). Regarding distinctiveness, participants were asked to rate
each icon on the basis of how easily it could be distinguished from all the
other icons in a group of icons (1, not distinct; 5, very distinctive).

Participant ratings corresponded with the authors’ classification of the
icons into three levels of quality. The average ratings for each level of icon
quality are presented in Figure 3. Participants rated the good quality icons as
being the least complex and most distinctive. Poor quality icons were rated as
being the most complex and least distinctive. Fair quality icons were rated as
being relatively distinct but of moderate complexity. Individual ratings for
each icon are presented in an appendix.

Additionally, the level of complexity of each icon was calculated using an
automated analysis program (Forsythe, Sheehy, & Sawey, 2003). Again, the
relative-mean automated complexity ratings correspond to the three levels of
icon quality. Good quality icons had the lowest level of complexity, 51.5, fol-
lowed by fair quality icons, 151, and poor quality icons, 187. The automated
rating were highly correlated with the participant ratings, r = 0.89. Auto-
mated ratings are based on the PerimeterX4 metric (see Forsythe et al., 2003,
for more information).

A final within-subjects factor, icon border, had three levels. The target icon
to be searched for could be presented without a border, with a circle as a bor-
der, or with a box as a border. Refer to Figure 2 for examples of each border
type. Several previous studies replicated the finding that the type of border
did not affect search performance (Everett & Byrne, 2004; Fleetwood, 2001;
Fleetwood & Byrne, 2002). The variable is not considered further here and is
only mentioned for the sake of completeness.

Each block in the experiment consisted of 36 trials. Each independent vari-
able was examined at each level of the other independent variables (4 × 3 × 3
= 36). The order of presentation was randomized within each block.
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The dependent variable being measured was the response time of the us-
ers—specifically, the time from when they clicked on a Ready button to indi-
cate that they were finished examining the target icon to when they clicked on
the target icon among the set of distractor icons.

One potential independent variable that was held constant was the num-
ber of icons matching the target in the search display. On each trial, one third
of the icons in the search display had the same pictorial icon and matching
border as the target icon, referred to as target-matching (TM) icons. For exam-
ple, in a set size of six icons, one icon would be the target; one icon would be a
TM icon; and four icons would be non-TM icons. This was done to more
closely approximate a real-world task in which a user must differentiate
among similar or identical icons (such as searching for a document in a direc-
tory with multiple documents created by the same word-processing pro-
gram). Ultimately, the user was forced to differentiate among the icons by
reading the filenames.

2.1. Materials

The icons used in the experiment were standard sized icons (32 pixels × 32
pixels). Participants were seated approximately 20 in. (51 cm) from the com-
puter screen (800 × 600 pixel resolution). At that distance each icon sub-
tended 1.15 degrees of visual angle. The icons were separated by approxi-
mately 1.2 degrees of visual angle horizontally depending on the shape of the
icon. Immediately below each icon was the filename corresponding to that
icon. The distance from the bottom of a filename to the top of an icon below it
subtended approximately 0.4 degrees of visual angle.

Twelve different icons were created to represent each level of icon quality,
for a total of 36 distinct icons (3 levels of quality × 12 icons per level). (An im-
age of each icon is provided in the appendix.)

2.2. Procedures

Users were instructed on how to perform the task; then they were given
one block of practice trials to develop some familiarity with the task and with
the mouse used to point and click on the target icon.

To begin each trial, participants were presented with a target icon and a
corresponding filename. After 1500 ms, a button labeled Ready appeared in
the lower-right corner of the screen. Participants would click the Ready but-
ton when they felt as though they had sufficiently examined the target icon
and were ready to move on to the next stage of the trial.

Immediately after clicking on the Ready button, the participants were pre-
sented with a screen that contained a set of icons (6, 12, 18, or 24), of which
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one was the target icon. The users’ task was to identify the target icon and
click on it as quickly as possible. Clicking on an icon brought them to the first
stage of the succeeding trial—the presentation of a new target icon.

Response time was measured from the time that they clicked on the Ready
button to the time that they clicked on an icon in the distractor set.

The icons for each trial were placed in a window in the upper-left quadrant
of the computer screen. The position of the icons within the window was fixed
such that icons were placed in the same positions on each trial. For instance,
in a set size of six icons, the icons were always placed in the same locations on
the screen, but the six icons that were present varied from trial to trial. From
the available positions for each trial, the position of target icon was randomly
selected. Likewise, the positions of the remaining icons were determined ran-
domly from those available for each trial.

Also randomly selected were the filenames for the icons. The distractor
filenames and the target filenames were randomly selected without replace-
ment from a list of 750 names until the list was exhausted, at which time the
list was recycled. All of the filenames were two or three syllable English words
six to 10 letters in length.

Each user completed four blocks of trials in addition to the practice block
for a total of 180 trials.

3. COMPUTATIONAL MODELING OF THE EXPERIMENT

3.1. Model

A model was constructed in ACT-R 5.0 that interacted with the same soft-
ware as that of the participants. This section discusses the relevant details of
the original model presented in Fleetwood and Byrne (2002).

In the initial, or precue, stage of a trial, the model must remember the tar-
get icon and its corresponding filename. As mentioned, each icon is “seen” by
ACT-R’s Vision Module as a list of attribute pairs. (The complete list of attrib-
ute pairs representing each icon is reproduced in the appendix.) For the good
quality icons, a single attribute pair represents each icon (e.g., “red circle”). In
contrast, more complex icons will have a number of attribute pairs associated
with them—gray triangles, white circles, and so forth. What makes these
more complex icons poor icons in the experiment is not the number of attrib-
ute pairs that the icon has per se but rather the number of attribute pairs that
the icon shares with other icons in the distractor set. For example, the set of at-
tribute pairs representing many of the icons in the poor quality set include
gray triangles and white circles. (See the appendix for a list of the attribute
pairs representing each icon.) The model stores only one attribute pair of the
target icon so that it can identify the target icon in the distractor set. (The at-
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tribute pair that the model stores is randomly selected from the list of attribute
pairs representing the icon.) As a result, the model will often examine icons
that do not match the target icon exactly but rather share only one particular
attribute pair with the target icon. It is this overlap of attributes, or similarity,
that makes such icons poor icons in this context. In contrast, the good quality
icons have no attribute overlap with other good quality icons; thus, the model
examines only icons exactly matching the target icon. Hence, the efficiency of
the model’s search is a product of the simplicity of the target icon (the number
of attribute pairs representing it in ACT-R) and the relative similarity of the
target to the distractors (the number of other icons that are represented by at
least one of the same attribute pairs).

The exact nature and number of the attribute pairs used to represent each
icon in the fair and poor conditions are free parameters in the models; how-
ever, the set designed for the original models (Fleetwood & Byrne, 2002) was
not altered for the current modeling effort.

In the precue stage of a trial, the model attends the target icon and selects at
random one attribute pair (e.g., “gray rectangle”) from the list of attribute
pairs representing the target icon, and it stores this attribute pair. It also notes
and stores the filename. The model uses the stored feature and filename to
identify TM icons among the distractor set. Before moving on to the second
stage of the trial (the search stage on the distractor screen), the model locates
and clicks the Ready button. This series of events is completed in ACT-R
through seven productions (two to locate the target icon and store, “remem-
ber,” an attribute pair; three to locate the filename and store it; and two to lo-
cate and click on the Ready button).

On the second stage of a trial, the model must find the target icon among
the distractors. The search process is accomplished through four productions
in ACT-R. First, a random icon is found that contains the feature of the target
icon stored by the model in the initial stage of the trial (one production). Next,
visual attention is shifted to the filename below the newly located icon (two
productions). Finally, if the filename below the new icon matches the file-
name stored by the model, then visual attention is shifted up to the icon so
that it can be clicked on with the mouse (one production). If the filename does
not match the target icon, then another icon with the stored feature is located
and the search progresses. This sequence of events corresponds to 285 ms of
simulated time ([4 productions × 50 ms each] + 85 ms for one shift of visual at-
tention).

The model output is a trace of what actions took place and when they oc-
curred. The simulated time for the model to complete a trial is a summation of
the number of productions that fired (50 ms per production), the number of
shifts of visual attention (85 ms each), and the motor movements made to
point and click with the mouse (movement times are based on Fitts’s law) sub-
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tracting for any instances when actions occurred in parallel. Only one pro-
duction may fire at a time, but the different ACT-R modules (visual and mo-
tor, in this case) may operate in parallel. We also recorded any shifts of visual
attention made by the model (when and where they occurred) for comparison
with the eye-tracking data.

3.2. Results

The fit of the model to the data (reported in Fleetwood & Byrne, 2002) was
quite good (see Figure 4). Most important, the model captured each of the
pronounced effects that were seen in the data—those of set size and icon
quality.

The proportion of variance explained (R2) by the model relative to the data
from the experiment was .98. The root mean square error (RMSE) and per-
cent average absolute error (PAAE) between the model and the data were 126
ms and 4.27%, respectively. The quality of the fit suggests that the model does
an excellent job of accounting for the major trends in the data.

Overall, we felt encouraged by the performance of the model compared to
the experimental data. However, the response time data provide only a single
metric for comparison and do little to tell us if the model accomplished the
task in a humanlike manner. Numerous models have fit response time data
well but have not necessarily fit other metrics of human performance. For ex-
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ample, Byrne, Anderson, Douglas, and Matessa (1999) described two models
of human performance when using click-down menus. Both models fit the re-
sponse time data well, but both models use different underlying strategies,
neither of which was a particularly good fit to participant eye-movement data
for the same task. Similarly, the original icon search model adequately fits the
participant response time data, and the strategy employed by the model pro-
duces several predictions with respect to the visual search strategies of partici-
pants. To evaluate the eye-movement predictions made by our model, we
conducted an eye-tracking study of the task.

4. EYE TRACKING THE ICON SEARCH TASK

Researchers have used eye tracking to make fine distinctions regarding the
processes used in a visual search task. For example, researchers were able to
identify oculomotor distinctions between parallel and serial search processes
(Zelinsky & Sheinberg, 1997) and develop models that account for visual per-
formance effects, such as the “global” effect of the visual environment in mak-
ing saccades (Becker & Jurgens, 1979; Findlay, 1982). Also, researchers have
used eye tracking to gather information on the features of objects that drive vi-
sual search (Gould & Dill, 1969; Viviani & Swensson, 1982; L. G. Williams,
1966, 1967).

The use of eye tracking has also made its way into studies of HCI and as a
potentially applied procedure in the computer industry in the form of
“gaze-based” interfaces (Salvucci & Anderson, 2000; Sibert & Jacob, 2000).
On a different level, it has been used as a means of understanding the pro-
cesses underlying the behavior of computer users (e.g., Byrne et al., 1999;
Ehret, 2002; Hornof & Halverson, 2003; Jacko et al., 2001).

4.1. Model Predictions

The ACT-R model of icon search just described makes several predictions
regarding the eye movement patterns of participants.

• Number of shifts of attention per trial: The model predicts that the total
number of shifts of visual attention per trial increases as set size increases
and as icon quality decreases. Specifically, in the good quality condition,
the model examines only TM icons. The model evaluates a potential
icon (one sharing an attribute pair with the target icon) in one shift of vi-
sual attention. It assumes that a TM icon can be located preattentively;
that is, it exhibits the “pop-out” phenomena found in visual search.
Hence, it predicts that the number of icons examined by participants
should approximate the average number of good quality icons that must
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be examined to locate the target icon. For example, in a set size of 6
icons, there are 2 TM icons; on average, the model must examine 1.5
TM icons to locate the target icon.

• Number of shifts of visual attention to TM icons: The model shifts attention
only to icons sharing an attribute pair with the target icon. Because this
attribute pair is unique in the good quality set, the model examines only
TM icons in the good quality set. TM icons were icons exactly matching
the target icon, or one third of the icons in each distractor set. The model
examines a decreasing proportion of TM icons as the quality of the icons
decreases. Hence, the model predicts that participants will examine a
high proportion of TM icons in the good quality condition and that this
proportion will decrease as quality decreases. However, even in the
poor quality condition, participants should examine a higher proportion
of TM icons than if fixations were randomly directed.

• Search strategy: The model examines any icon sharing the attribute pair
that was selected in the precue stage of the trial and that has not yet been
examined, but the order in which it examines them is random. Hence,
the model prediction is that participants will show a preference for ex-
amining TM icons but show no preference for the order in which the
TM icons are examined.

• Reexamination of icons: The model predicts that participants will occa-
sionally and nonsystematically reexamine icons. This is consistent with
visual search studies that show that people have little memory for where
they have looked in a static visual scene (Horowitz & Wolfe, 1998). The
model has no way of marking or remembering which icons it has at-
tended. The reason is that the icons themselves are never actually at-
tended, just the filenames below the icons; ACT-R “remembers” only lo-
cations to which it has shifted attention. Hence, the model occasionally
and randomly redirects attention to icons and filenames that it has ex-
amined. Because this revisitation is stochastic, analytic predictions are
difficult to derive, and Monte Carlo simulations are required to calculate
the likelihood of revisitation.

4.2. Methods

Participants

The participants in the experiment were 10 undergraduate students at
Rice University who were participating to meet a requirement for a psy-
chology course. Although some variation with regard to computer experi-
ence was expected, users in this population are generally familiar with com-
puter use.
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Design and Procedure

The design and procedure of the experiment were identical to those de-
scribed in the Methods section with the addition of the eye tracker to record
the participants’ eye movements while engaged in the task.

Apparatus and Materials

The eye tracker used was an ISCAN RK726/RK520 HighRes Pupil/CR
tracker with a polhemus FASTRACK head tracker. Head-mounted optics
and a sampling rate of 60 Hz were used in the experiment. This system, like
many other laboratory eye trackers, works by shining an infrared light onto
the eye and taking a video image of the eye. From that image, it is possible to
determine the pupil center and the point on the cornea closest to the camera
(the corneal reflection) and take the vector between them. This vector
changes as the eye orients to different positions on the screen, and with cali-
bration to known points it is possible to compute visual point of regard
(POR), also referred to as point of gaze. The magnetic polhemus is used to com-
pensate for head movements. POR reports by this system of eye-tracking
equipment are typically accurate to within one-half degree of visual angle.

POR and mouse position were recorded at 60 Hz by the experimental soft-
ware. Stimulus and POR/mouse data for each trial were recorded so that all
individual trials could be “replayed” at various speeds. An experimenter
monitored each experimental trial and recalibrated the eye tracker if there ap-
peared to be a sizable disparity between reasonable expectations about where
users were looking (in particular, users needed to look at the target on each
trial) and the position reported by the tracker.

Analysis Technique

From the raw data, it is possible to compute where and when fixations oc-
cur. This can be done either by assuming that any eye position within a given
region for more than some threshold number of milliseconds is a fixation
(dwell based) or by assuming that any period of time showing relatively low
velocity is a fixation (velocity based). For the data set, both methods were ini-
tially used and examined to verify that they both yielded approximately the
same result. For ease of calculation, the dwell-based method was used for fur-
ther analyses.

For analyses in which a direct comparison of the eye-tracking data and the
ACT-R model was made, gazes were used as the metric of analysis in lieu of
fixations. An uninterrupted series of subsequent fixations on a region of inter-
est (an icon in this case) was considered a gaze. Aggregating fixations into
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gazes on a region of interest is a commonly used technique in the analysis of
eye-tracking data (e.g., Rayner, 1995; Rayner & Pollatsek, 1998). For analyses
in which fixations were attributed to a particular icon, the fixation was attrib-
uted to the nearest icon.

Gazes, rather than fixations, were analyzed here to make a more direct
comparison with the data output by the model, shifts of visual attention. As
noted, ACT-R 5.0 describes patterns of visual attention but does not explicitly
predict eye movements or fixations. It is well established that visual attention
guides eye movements; that is, visual attention is shifted to locations in the vi-
sual field, and the eyes may or may not follow. Specifically, for any shift of vi-
sual attention, three possibilities may occur with respect to eye movements
and fixations. For a given shift of visual attention, a saccade and a single fixa-
tion may be made to the new locus of visual attention. In this case, there
would be a one-to-one correspondence among fixations, gazes, and shifts of
visual attention. A second possibility occurs when a shift of visual attention is
followed by several fixations toward, or on the region of, interest before a new
shift of visual attention is made. In this case, to get a direct correspondence
between the number of shifts of visual attention and the number of fixations
on a region, one would collapse the number of fixations into a single gaze. A
third possibility occurs when multiple shifts of visual attention occur before
any eye movements are made. In this case, there are no eye movement data
that may be compared to visual attention predictions, making any sort of
analysis regarding the two metrics quite difficult.

Our model made several predictions regarding the visual attention shift
patterns of participants. By collapsing the fixation data from the eye-tracking
study into gazes, we were able to directly compare the predications from our
model to the data from the eye-tracking study. We were able to account for
two of the three aforementioned conditions, when there was an equal or
greater number of fixations relative to shifts of visual attention. Accounting
for the condition when there was a greater number of visual attention shifts
than that of fixations would have been impossible given the methodology em-
ployed.

The disadvantage of collapsing fixations into gazes for the purposes of
analysis is that some level of precision in the data is lost. Hence, whenever we
were interested in analyzing the eye-movement patterns of participants but
were not making comparisons between the model and the eye-movement
data, we used fixations as the metric of analysis.

4.3. Results

When the user did not correctly identify the target icon, the trial was con-
sidered an error and removed. Outliers were also removed when the re-
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sponse time was more than three standard deviations from the 5.0% trimmed
mean of the user for the corresponding set size. In total, fewer than 2.0% of the
trials were removed due to errors and outliers. For statistical tests, where re-
sponse times had been removed as errors or outliers, they were replaced with
the individual participant’s overall mean. Trials on which there were no fixa-
tions on the region of the screen containing icons were removed from the
analysis (6.6%). The removal of a relatively high percentage of trials from the
analysis was due to an equipment problem during data collection in which a
poor calibration of the equipment to the individual participant was obtained.
The equipment problem was not systematic in nature and was corrected be-
fore the following trial was presented.

Over the course of all of the trials, the average duration of fixations was 291
ms. Across all trials, participants made approximately 11.1 fixations and 3.3
gazes per trial.

The response times in the eye-tracking study (presented in Figure 5) corre-
sponded with those from the previous study. As icon quality decreases (good
to fair to poor), response times increase, F(2, 18) = 58.71, p < .001. Also, as set
size increases, response times increase, F(3, 27) = 71.89, p < .001. Finally, an
interaction between set size and icon quality indicated that response time in-
creased proportionately more as set size increased for poor icons than for
good quality icons F(6, 54) = 2.38, p < .05.

Theaveragenumberofgazesper trial areplottedasa functionof iconquality
and set size in Figure 6 (the solid lines represent gaze data from participants).

ACT-R ICON SEARCH 173

Figure 5. Average response time by set size and icon quality in the eye-tracking study.



Patterns in the gaze data were similar to those found in the response time data—
that is, as set size increases and icon quality decreases, the average number of
gazes increases (as does response time). This is consistent with other studies that
have foundqualitatively similarpatterns inRTdataand thenumberof fixations
per trial (e.g., Shen et al., 2000; D. E. Williams, Reingold, Moscovitch, &
Behrmann, 1997; Zelinsky & Sheinberg, 1997). Revealed in the average num-
ber of gazes per trial data were reliable main effects of set size, F(3, 27) = 77.08, p
< .001, and icon quality, F(2, 18) = 56.60, p < .001, and a reliable interaction be-
tween set size and quality, F(6, 54) = 5.64, p < .001. The number of gazes made
by each participant on each trial was highly correlated with one’s response time
for that trial. Correlations per subject ranged from r(143) = .55, p < .01, to r(143)
= .86, p < .01. Again, this is consistent with previous studies.

However, the model overpredicted the number gazes at all levels of icon
quality and set size. The RMSE was 2.53 fixations; the PAAE was 77.08%;
and the R2 was .96. The relatively high RMSE and PAAE indicate a poor ab-
solute model-to-data fit; however, the high R2 indicates that the model did a
good job of fitting the general trends in the data.

In Figure 7, the ratio of TM fixations (fixations to TM icons) to total fix-
ations is presented as a function of icon quality and set size. Nontarget fixa-
tions are fixations to any icon other than a TM icon in the distractor set. Fixa-
tions to areas outside of the distractor set of icons (i.e., when a participant
fixated on the region of the screen that was not part of the icon set) were ex-
cluded from this analysis (approximately 8% of the total number of fixations).
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Participants had a higher proportion of TM fixations relative to non-TM fixa-
tions as icon quality increased, F(2, 18) = 7.87, p < .01, with Huynh-Feldt cor-
rection. Additionally, participants made a higher proportion of fixations to
TM icons than would be expected if fixations were randomly directed, t(9) =
6.90, p < .01.

Several qualitative patterns emerged in the data that were reflective of the
aforementioned patterns in the fixation and gaze data. First, it seemed that
participants in the experiment used different search strategies depending on
the level of quality of the icons. For instance, in the good quality condition,
the search strategy used by participants was often directed specifically at TM
icons (for an example, see Figure 8). In this case, the saccades were nearly all
directed to a TM icon, or they fell in the area between two groups of TM
icons, leaving whole areas of the distractor set unexamined. Second, this di-
rected strategy often began with the largest group of TM icons (icons adjacent
to one another) and proceeded to smaller groups of TM icons until the target
was identified. In contrast, search strategies in the poor quality condition were
not directed at TM icons and thus might cover the whole set of icons, possibly
in a circular or zigzag pattern (Figure 9).

Analysis of Fixation Contingency

The model predicted that participants would show preferences for fixating
on TM icons, but it predicted that they would have uniform preference for all
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Figure 8. Example of a directed search with good quality icons. The round dots indicate
point of regard, going from darker to lighter with time. The numbers to the right of an
icon represent the number and order of fixations that were attributed to that icon in the
analysis of the data—that is, the first four fixations were attributed to the icon labeled
“quicksand.” The cross-hairs (in the lower right) indicate the position of the mouse. The
target-matching icons are circled. (The circles were not part of the experiment stimuli.)
Note that the participant examines only a small subset of icons—those matching the tar-
get icon. The participant begins with the largest group of target-matching icons and
eventually proceeds to the single target-matching icon in the lower right.

Figure 9. Example of an undirected search with poor quality icons. Following the dots
(which indicate point of regard) from dark to light (with time) and the numbers to the
right of an icon (which indicate which fixations were attributed to that icon in the analy-
sis) indicates that the subject examined nearly the entire set of icons in a zigzag manner.
The mouse position (cross-hairs) follows a similar pattern.



TM icons—that is, that the probability that a participant would fixate any TM
icon was equal for all TM icons. It was clear from watching replay videos of
the trials that this was not the case—that participants were not random in their
searches through the TM icons. The authors were familiar with a computa-
tional model of vision, EMMA (discussed in some detail subsequently),
which predicted that an efficient icon search strategy in terms of average
saccade distance would be to examine the TM icon nearest to the current
point of regard. In this case, a participant’s next fixation would be contingent
on the location of his or her current fixation. To examine whether the fixation
patterns of participants exhibited any evidence of this “nearest” strategy, we
investigated the probabilities of subsequent fixations landing on TM icons;
specifically, we asked, given a current fixation, what was the probability that a
participant’s next fixation would be directed to a TM icon and the nearest TM
icon to the current point of regard.

For all trials, the final fixation was not considered in the analysis as a cur-
rent fixation, because there was no subsequent fixation to examine. For the
same reason, all trials in which all fixations were directed to only a single icon
on the region of screen containing icons (2.4%) were eliminated from the
analysis.

The proportion of fixations where the contingent fixation was to a TM icon
is presented in Figure 10. Participants were able to direct their subsequent fix-
ations to TM icons at above-chance accuracy. (Accuracy in this context is de-
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fined as the likelihood of fixating a TM icon.) Even in the poor icon quality
condition, where the icons were designed so that the TM icons would be diffi-
cult to distinguish from non-TM icons, the proportion of TM fixations differs
reliably from the proportion one would expect if fixations were randomly di-
rected (one third), t(9) = 4.93, p < .001. Inverse patterns to those observed in
the response time and fixation data are apparent. Specifically, as icon quality
increases, the accuracy of participants fixations increases, F(2, 18) = 20.92, p <
.001. And as the set size increases, the fixation accuracy decreases, F(3, 27) =
3.98, p < .05.

The proportion of contingent TM fixations in which the subsequent fixa-
tion was to a nearest TM icon was also calculated. A nearest TM icon was de-
fined in terms of the number of icons lying in between the currently fixated
icon and a TM icon. Note that multiple TM icons could qualify to be a nearest
TM icon. For instance, for any icon there could be multiple TM icons imme-
diately adjacent to it, and each of these adjacent TM icons would qualify as a
nearest TM icon. If there were no TM icons adjacent to the current icon, then
TM icons adjacent to the adjacent icons would be considered the nearest TM
icons, and so on and so forth. Also note that there is a high probability that the
next TM fixation would be to a nearest TM icon. For instance, in a set size of
six icons, there are two TM icons. Hence, if the next fixation were to a TM
icon, it would have to be to the nearest TM icon, because there is only one
other TM icon in the set.

Across all conditions of icon quality and set size, nearly all of the partici-
pants’ contingent fixations were directed to a nearest TM icon. Where the
subsequent fixation was to a TM icon, the percentage of fixations directed to a
nearest TM ranged from approximately 99% to 95%. Even at the largest set
size in the poor quality condition, where the model predicted that participants
would be the least efficient in their visual search, nearly all (approximately
95%) of the TM fixations were to a nearest TM icon.

Again, patterns corresponding to those found in the RT and fixation data
were observed in the proportion of subsequent fixations to a nearest TM icon.
A reliable effect of set size, F(3, 27) = 4.53, p < .05, and a reliable effect of icon
quality, F(2, 18) = 22.32, p < .001, indicate that participants fixated a higher
proportion of TM icons nearest the current POR at lower sizes and better
quality icons. Also, even in the poor icon quality condition, the proportion of
TM fixations differs reliably from the proportion that one would expect if fix-
ations were randomly directed (one third), t(9) = 4.72, p < .01.

Reexamination of Icons

To examine the model prediction that posited that participants would reex-
amine icons, the proportion of fixations to an icon that had been examined
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was calculated. A fixation was considered in this category if there was at least
one intervening fixation to another icon in between a fixation or fixations to a
single icon—that is, the participant looked at an icon, then looked at other
icons, then returned to the icon. In the poor quality condition, where there
was the most reexamination of icons, icons were reexamined infrequently, a
maximum of approximately 4% of the time at the largest set size. This sug-
gests that people reexamine icons infrequently and at a rate that is within the
margin of error of the system employed.

4.4. Discussion of Eye-Tracking Results

The eye-tracking data revealed a strong correspondence with the reaction
time data from the previous experiments. As we saw increases in reaction
time with increases in set size and decreases in icon quality, we saw corre-
sponding increases in the number of gazes per trial under the same condi-
tions. The model also predicted the response time data well (Figure 4).

Despite predicting the response time data well, the model overestimated
the number of gazes per trial across all set sizes and levels of quality (Figure 6).
This indicates that the estimated time to make shift of visual attention in the
model is faster than the average gaze duration of participants. This may be
due to two possible reasons. One reason is simply that the model-estimated
time to make a shift of visual attention and encode the item at that location,
135 ms (50 ms for a production to fire and 85 to shift attention and encode an
item), is simply too fast for the current task. The 85 ms setting is the unad-
justed estimation of this time in ACT-R 5.0, and it is quite possible that we
may achieve more accurate predictions by adjusting this parameter. A second
possibility is that participants are making many covert shifts of visual atten-
tion, that is, shifting visual attention and encoding information without mak-
ing a measurable fixation on the information. Both of these possibilities are
considered further in the next section.

The model predicted that participants would be more accurate in locating
TM icons as icon quality increased. This effect was manifested in the fixation
data through the proportion of TM fixations to total fixations, which in-
creased with each level of improvement in icon quality (Figure 7). There was
also some evidence for this effect at a qualitative level, manifested in the “di-
rected” search strategies in the good quality icons and the “undirected” search
strategies seen with poor quality icons.

One notable pattern in the data arises in the average number of gazes per
trial across the four different set size conditions (Figure 6). The average num-
ber of gazes per trial more than doubles from the smallest set size (6 icons) to
the largest set size (24 icons). However, the proportion of TM fixations across
the range of set sizes decreases approximately 10% across the four different
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set sizes (Figure 6). From these two patterns in the data, it can be inferred that
although the number of fixations increases greatly with set size (nearly a
“100% effect”), the ability of participants to shift attention to TM icons does
not change nearly so dramatically, as measured by the proportion of partici-
pants’ fixations directed to TM icons.

The accuracy of the participants’ fixations, as measured by the frequency
of contingent fixations on TM icons, suggests that participants were able to
perform a relatively efficient conjunctive visual search for TM icons. By defi-
nition, the proportion of subsequent fixations to a nearest TM icon is lower
than the proportion of subsequent fixations to TM icons (the set of fixations to
the nearest TM icons are a subset of fixations to TM icons). What is remark-
able, however, is that the proportions are remarkably similar. This indicates
that in nearly all cases where the participants’ next fixation went to a TM icon,
it was to a nearest TM icon. Participants showed a clear preference for fixat-
ing the TM icon nearest to their current point of regard. The model did not
capture this aspect of the participants’ behavior. The model predicted that
participants’ fixations would be randomly directed to icons sharing some
level of similarity (represented in the model as an attribute pair) with the tar-
get icon.

Close examination of the data also speaks to two other possible search
strategies employed by participants. One potential strategy of users would be
to simply shift attention to the icons near to the current point of regard. How-
ever, with such a strategy, the proportion of TM icons attended to on subse-
quent fixations would be approximately 0.33, because one third of the
distractor set is composed of TM icons, a level far below that found in the
data. The data also refute the possibility that users are simply searching the
display in a systematic left-to-right, top-to-bottom, or some other directional
manner. With such a strategy, users would not show such a high proportion of
subsequent fixations to TM icons, because shifting attention according to
such a rote strategy would cause participants to frequently shift attention to a
TM icon that is farther away than a nearest TM icon. Hence, the proportion
of contingent fixations to TM icons would be lower. However, it is possible
that some combination of the aforementioned strategies is responsible for
producing the pattern of visual search activity manifested in the eye move-
ment data. Users clearly showed a preference for directing their attention to
TM icons, to icons near to the current POR, and they may even do so using a
directional strategy (although the qualitative data do not show evidence for a
directional strategy).

Regarding the average number of gazes per trial, participants made fewer
gazes than what the model predicted. The greater number of shifts of visual
attention made by the model may be due to the model’s behavior of reexam-
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ining icons. Evidence in the form of low icon revisitation rates indicates that
participants have an accurate memory for where they have looked in this task
and reexamine icons infrequently. The greater number of model shifts of vi-
sual attention may also be due to a disassociation between visual attention
and shifts of POR. It is possible that the participants are able to examine mul-
tiple icons within a single gaze.

5. REVISING THE MODEL

The eye-tracking study highlighted several areas where the model’s strate-
gies did not match those of users in terms of search efficiency. This section
outlines some of the potential revisions to the models suggested by the results
of the eye-tracking study.

5.1. Number of Gazes per Trial

The poor fit of our model to the eye-tracking data in terms of the aver-
age number of gazes per trial led us to consider an issue in the underly-
ing cognitive architecture of ACT-R that other authors have discussed
(Salvucci, 2001). ACT-R by default makes predictions regarding only
unobservable attention shifts. Yet the data used in our analysis of eye move-
ments was, by necessity, based on observable movements in participants’
POR. It is well established in the research community that eye movements
do not necessarily mimic movements of visual attention; that is, people do
not always move their eyes to their focuses of attention (Henderson, 1992;
Rayner, 1995). The experiments modeled here may provide an example of
where this is the case. Fortunately, there is an extension to ACT-R’s vision
module that addresses the disassociation between eye movements and
movements of attention.

5.2. Eye Movements and Movements of Attention

EMMA Model

Eye Movements and Movements of Attention (EMMA) is a computational
model that serves as a bridge between observable eye movements and the
unobservable cognitive processes and shifts of attention that produce them.
The model describes whether eye movements occur, when they occur, and
where they land with respect to their targets (Salvucci, 2001).

Concerning visual encoding, the model describes how peripheral viewing
and object frequency affect the time needed to encode a visual object into an
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internal representation. When cognition requests a shift of attention to a new
visual object, EMMA encodes the visual object into an internal representa-
tion. The time Tenc needed to encode object i is computed as follows:

Tenc = K [-log fi] ek_I (1)

The parameter fi represents the frequency of the object encoded, speci-
fied as a normalized value in the range (0, 1). The parameter _i represents
the eccentricity of the object, measured as the distance from the current eye
position to the object in units of visual angle. Thus, encoding time increases
as object eccentricity increases and as object frequency decreases. (The con-
stants K and k are scaling constants.) The encoding equation is based on an
algorithm from the E-Z Reader model of eye movement control in reading
(Rayner, Reichle, & Pollatsek, 1998; Reichle, Pollatsek, Fisher, & Rayner,
1998).

The time needed to make an eye movement is also calculated in EMMA.
The majority of the eye movement time is based on fixed parameters, but it is
also based partly on the eccentricity of the object; that is, the longer the
saccade, the greater the calculated eye movement time (2 ms for each degree
of visual angle subtended by the saccade).

With respect to spatial characteristics, EMMA provides a simple formal-
ization of where eye movements land with respect to a desired destination.
Given a saccade to a particular object, the model assumes that the landing
point follows a Gaussian distribution around the center of the object. The
variance of the distribution is a function of the distance of the saccade such
that longer saccades are generally less accurate.

The control flow of the EMMA system describes how cognition, visual
encoding, and eye movements interact as interdependent processes. When
cognition requests an attention shift to a new visual object (such as a new
icon in our paradigm), EMMA begins encoding the object while an eye
movement is prepared and (possibly) executed. Eye movements occur in
two stages: preparation, which is the retractable, or “labile,” stage of the eye
movement program; and execution. If the encoding of the object completes
and cognition requests a subsequent shift of attention before the prepara-
tion of the eye movement is complete, then the eye movement is canceled
and a new eye movement may begin. If the attention shift occurs during
eye movement execution, execution continues to run to completion while
preparation for a new eye movement is begun. If the eye movement com-
pletes before encoding completes, encoding continues and a new
eye-movement is prepared. However, because the eye movement has (pre-
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sumably) brought the POR nearer to the visual object, encoding speed in-
creases accordingly.

Incorporating EMMA

We incorporated EMMA to improve the performance of the models in
those areas that the eye-tracking study indicated were ripe for improvement,
specifically, the number and location of fixations and the timing of move-
ments of visual attention.

As noted, our models made too many shifts of visual attention relative to
the number of fixations made by participants in the eye-tracking study. With
EMMA, the number of shifts of visual attention will not decrease; however,
because eye movements do not directly correspond with shifts of attention in
EMMA, we could expect the number of eye movements, or shifts of POR, to
decrease. When the encoding time for a visual object is less than the time to
make the labile portion of the eye movement, then the eye movement is not
made, even though the object has been examined.

In addition to seeing a decrease in the number of shifts of POR made by
the models, we expected to see increasingly similar patterns of the location of
shifts of the simulated POR relative to the eye movements of participants. Al-
though visual attention will be focused on the filename selected by the model,
the actual point of regard calculated by EMMA is based on a Gaussian distri-
bution around the center of the object. Thus, the model will not always shift
its POR directly to the center of an object. However, when visual attention re-
mains focused on an object for an extended period, this allows the model to
make successive shifts in its POR, each one presumably more accurate than
the last (i.e., focused on the center of the target object). This will occur due to
longer encoding times for the object or because cognition has not requested
an additional shift of visual attention, as when the model is making a mouse
movement to the object. One of the instances where participants consistently
and overtly attended the target icon was in cases where they selected it with
the mouse; EMMA predicts this behavior.

We also hoped that the incorporation of EMMA into our modeling ef-
forts would provide greater predictive power of our models regarding the
timing of fixations. Our previous models used a fixed estimate of time to
make a shift of visual attention and encode and object of 85 ms, the default
value in ACT-R. However, there is a large body of evidence that suggests
that the time to make a saccade and encode an object is a function of a
number of different factors, one of the most influential of which is the ec-
centricity of the target object (e.g., Fuchs, 1971; Russo, 1978). Because the
eccentricity of the object is taken into account when calculating the time to
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make a shift of the POR in EMMA, the incorporation of EMMA will allow
us to make predictions as to the relative efficiency of various icon search
strategies based on the average length of shifts of visual attention. Spe-
cifically, strategies that make shorter shifts of visual attention can be ex-
pected to be more efficient.

5.3. Improving the Model Search Strategy

The most significant finding from the eye-tracking study that we wanted to
incorporate into the model stemmed from the efficiency of participants’ fixa-
tions. Participants followed a strategy of looking at a TM icon near to their
current POR. To accommodate this strategy in the model, we adopted a
“nearest” strategy. The model would simply select the TM icon nearest to the
current focus of visual attention. Thus, if examining an icon in a group of TM
icons, the model will examine all of the icons in the group before moving on
to the next group. Such a strategy also ties in with the predictions made by
EMMA regarding the advantages of making shorter shifts of visual attention.
Specifically, a strategy that makes the shortest possible shift will be the most
efficient strategy.

An additional aspect that was changed was the model’s behavior of revisit-
ing icons that it had already examined. Because the model did not actually
shift visual attention to an icon, it had no memory for which icons it had ex-
amined. We changed the code in ACT-R’s vision module to allow us to mark
specific objects at a location as having been attended even when visual atten-
tion had not explicitly been directed there. Specifically, we had the visual sys-
tem mark an icon as having been attended when the filename below the icon
was examined. The new model would not shift attention to locations that it
had previously attended.

5.4. Modeling Results

The model was run for 80 blocks of trials; predictions are the averages over
those 80 blocks. When the three model improvements were incorporated
into the model, EMMA, nearest-TM-icon strategy, and marking icons as at-
tended, the RMSE was 129 ms; the PAAE was 5.89%; and the R2 was .99 (see
Figure 11). On the basis of response time alone, relative to our previous mod-
els, the new model maintained the accuracy of the original model despite the
introduction of the new features.

We also compared the mean number of gazes made by participants to the
mean number of shifts of visual attention made by the model. This is pre-
sented for the revised model in Figure 12 (see Figure 6 for a comparison of the
original model to the eye data). Relative to the previous model, the revised
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Figure 11. Response time by set size and icon quality for the revised model and the ex-
periment data. The revised model data include the incorporation of EMMA, marking
icons as attended and using the “nearest” search strategy.

Figure 12. Mean number of shifts of visual attention per trial made by the model relative
to the mean number of gazes per trial made by participants (data).



model fares much better, although the model makes slightly more overt shifts
than those of the subjects. Using the same metrics for comparing the new
model visual shift data to the experiment fixation data as for the response
time data compared previously, the RMSE was 0.58 fixations; the PAAE was
15.79%; and the R2 was .99.

We also found that the qualitative performance of the model was quite im-
proved in many respects. One aspect of the eye-tracking study that we dis-
cussed was the general search patterns of participants. We noted that partici-
pants employed a “directed” strategy that was quite efficient in terms of
examining only TM icons (at least with the good quality icons). There was
also some evidence for a grouping strategy, whereby the icons in a group of
TM icons were examined before moving on to another group of target match-
ing icons (see Figure 8 for an example of a trial where these strategies were
employed). The new versions of the model were able to reproduce these qual-
itative aspects of the data quite well. Because the revised model examines TM
icons nearest to the currently attended icon, it generally searches within a
group of adjacent TM icons before jumping to a separate group of TM icons
(because the adjacent TM icons are nearer to each other). As an example of
the capability of the models, the exact trial as was presented to the user in Fig-
ure 8 was run with the model (see Figure 13). The line running through the fig-
ure shows the resulting trace of the POR data of the revised model. The
model begins its search from the Ready button and enters the depicted por-
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Figure 13. Example of the Text-Look model running an identical trial to that presented
in Figure 8. The line indicates the point-of-regard path of the model, and the numbers
represent the order of the visual attention shift. (All shifts were to filenames except the
final shift, which was to the icon above “legends.”) The model point-of-regard data be-
gins at the Ready button (not shown), enters the view in the lower-right corner, and fin-
ishes by selecting the icon above the filename “legends.”



tion of the trial from the lower-right corner. The model proceeds in a fashion
quite similar to that of the human participant, first examining the largest
group of icons before moving on to the nearest group and finally to the target
icon in the lower-right corner of the window (labeled legends). The model
would not follow this exact search pattern every time (the first icon that the
model selects for search is randomly chosen from the TM icons presented),
but the capability of the model to mimic human performance in this respect is
encouraging. Two caveats are that the model never revisits an icon and always
shifts attention to a nearest TM icon. Hence, at least in the good quality condi-
tion, the model is efficient in its search.

5.5. Discussion of Modeling Revisions

One improvement in the revised model was the inclusion of the EMMA
model to disassociate eye movements and movements of attention. When the
EMMA system was incorporated into the model without any other changes,
the effect was an overall increase in response time. The previous models used
a constant parameter of 85 ms for each shift of visual attention. EMMA uses a
set of algorithms to compute the encoding and saccade time based primarily
on the eccentricity of the target object from the current POR and the fre-
quency of encountering the target object. After incorporating EMMA into
the model, we found that the values computed by EMMA for shifting visual
attention to and encoding each new icon average to a value greater than 85
ms. A closer examination of this attribute of EMMA revealed that longer
shifts of visual attention, such as those from one side of the distractor set to the
other side, took an estimated time much greater than 85 ms and were thus re-
sponsible for much of the increase in average saccade time.

The increase in average time shift visual attention was compensated for in
the revised model through the other two major improvements in the model
suggested by the eye-tracking study: the “nearest” strategy and marking icons
as attended. The nearest strategy, always examining TM icons nearest to the
currently attended icon, resulted in shorter average shifts of visual attention.
Shorter shifts of attention correspond to shorter average times to make each
shift and encode the item at the new location, as calculated by EMMA, and
shorter average model response times. By marking icons as attended, even
though only filename below each icon was actually attended by the model,
the model no longer revisits icons. No revisitation of icons by the model
meant fewer shifts of visual attention per trial and lower average model re-
sponse times.

The aggregate effect on response time of incorporating EMMA, the near-
est strategy, and marking icons as attended into the revised model was mini-
mal. According to the metrics of comparison employed—RMSE, PAAE, and
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R2—the revised model did not fit the participant response time data any
better or worse than the original model. However, the revised model showed
substantial improvement in fitting human performance in terms of correspon-
dence to the eye-tracking data. This is an important point in the creation of
simulated human users—they must show humanlike performance on more
aspects of a task than just response time. Our revised model showed marked
improvement to fitting the average number of gazes per trial made by partici-
pants. Also, the search patterns of the revised model were a much better ap-
proximation of the visual search patterns exhibited by experiment partici-
pants. Specifically, the model now exhibited a preference for examining icons
nearest to the currently attended icon. Also, as a result of the nearest strategy,
the model now searches within groups of TM icons before searching between
groups, a pattern also exhibited by participants. However, it should be noted
the model is now slightly too good with respect to searching the nearest TM
icons. In the good quality condition, the next icon examined by the model is
always the nearest TM icon.

6. DISCUSSION

One of the more pronounced effects seen in the studies presented here
was the effect of icon quality. This effect was modeled by assuming that par-
ticipants were able to locate icons that matched a feature of the target icon
preattentively and that they could direct their visual attention to these loca-
tions with greater-than-chance accuracy. The evidence in the eye-tracking
studies presented here suggests that participants were indeed able to do so.
The ability of users to preattentively discriminate subsets of visual objects
(such as “all blue objects”) in conjunctive search tasks is not a new discov-
ery (e.g., Alkhateeb et al., 1990; McLeod et al., 1991; Nakayama &
Silverman, 1986; Treisman & Sato, 1990; Wolfe, 1992), and it is predicted
by the guided search model (Wolfe, 1994; Wolfe et al., 1989; Wolfe &
Gancarz, 1996). Additionally, previous research has shown that participants
are able to adapt their search strategies to the visual environment “on the
fly”—that is, from trial to trial or with each new visual display (Shen et al.,
2000). The contribution of this research is to show that these findings and
predictions hold in a more complex visual environment and task approxi-
mating that commonly encountered by modern graphical user interface us-
ers (McDougall et al., 2000).

Further analysis of the eye-tracking data revealed that participants made
virtually no fixations on icons that they had previously fixated; that is, par-
ticipants had almost perfect memory for where they had looked. Whether
people have memory for where they have looked in a visual search context
is currently the subject of some debate in the research community. One set
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of results suggest that participants have no memory for where they have
searched (e.g., Horowitz & Wolfe, 1998). However, other researchers (e.g.
Peterson, Kramer, Wang, Irwin, & McCarley, 2001) have found that people
do indeed show search patterns that would indicate that they have memory
for where they have looked. The evidence from our eye-tracking study
agrees with the latter point, because our participants clearly had memory
for where they had looked. The reason may be that the task required that
each icon be processed to a level of depth that included location informa-
tion or simply that it was a task that required eye movements. Although our
data do not weigh in on the source of this memory, our data suggest that
memory of visual search generalizes to HCI tasks. Many of the visual
search tasks encountered by computer users, such as searching through
menus or through lists of filenames, require reading or at least that attention
be shifted directly to individual items. To the extent that eye movements
and direct examination of individual objects are the precursors of memory
in visual search tasks, as evidence suggests (Boot, McCarley, Kramer, & Pe-
terson, in press), it is likely that computer users exhibit visual search mem-
ory in such tasks.

The search strategy of searching the icon nearest to the currently fixated
icon also has implications well beyond the realm of icon search. Tullis (1997)
discussed the grouping of information in the realm of screen design issues and
techniques: “The ways in which the elements are grouped plays an important
role in both the ease with which the users can extract the information and the
interpretations that they assign to it” (p. 510). Other researchers have made
similar distinctions. For example, Cakir, Hart, and Stewart (1980) wrote,
“grouping similar items together in a display format improves their readabil-
ity and can highlight relationships between different groups of data” (p. 114).
From this perspective, the organization of information on the screen has value
to the user by giving them some additional categorical information regarding
what is presented on the screen as well as improving the general “readability”
of the information. Although there is surely value in categorical information,
from the perspective of our modeling effort, there is additional value in
grouping the information on the screen that is reflected at a much lower level
in the cognitive system—in the visual search strategies employed by users.
Grouping information will tend to reduce the number and average distance of
shifts of visual attention made by the user while searching for a desired piece
of information. Shorter shifts and fewer numbers of them will result in finding
the desired information more quickly.

It is worth noting that we began to investigate the possibility that partici-
pants were using the “nearest” strategy in the eye-tracking data as a result of
the modeling endeavor. While looking for ways to improve the efficiency of
the model, we explored the possible addition of a computational model for vi-
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sion, EMMA, to the ACT-R model. EMMA made the clear prediction that an
efficient search strategy should minimize the average saccade distance, which
is what we discovered in the eye-tracking data. Without the aid of the model-
ing endeavor, it is unclear whether we would have considered looking for this
strategy.

This research has implications beyond the specific domain of icon search.
In particular, it speaks to issues of model complexity and constraint on cogni-
tive models. A general problem with applying computational cognitive mod-
els to real-world domains is the general lack of constraints on such models.
What our research has shown is that using response time alone is not a
strong-enough constraint on the model-building process; we were able to fit
the response time data well with an inaccurate strategy. By providing the
model with a more humanlike strategy, we were able to capture the effects
found in the eye-tracking data without sacrificing the ability to correctly pre-
dict response time. Although this did slightly increase the complexity of the
ACT-R model, we believe that this complexity was justified by the richer and
more complex eye-tracking data and our success in accounting for the key re-
sults found there. As we continue toward the development of simulated hu-
man users capable of making a priori predictions of human performance, it is
essential that the criteria by which we judge the models become increasingly
stringent. In the visual world of graphical user interfaces, eye-tracking data
will not only inform the development of the models but also provide addi-
tional criteria on which they may be judged.
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APPENDIX
Icon Ratings

For each icon: Ratings of complexity and distinctiveness, and list of ACT-R/
PM attribute pairs.

Icon
Complexity

Rating
Distinctiveness

Rating

Automated
Complexity

Rating
(Forsythe,
et al. 2002)

ACT-R
Feature List

Good Quality Icons
1.05 3.86 48 circle yellow

1.09 3.91 55 triangle yellow

1.09 3.95 48 circle red

1.14 4.23 55 triangle red

1.00 4.05 48 circle black

1.09 4.18 55 triangle black

1.09 3.50 48 circle brown

1.05 3.45 55 triangle brown

1.05 3.73 48 circle green

1.14 3.77 55 triangle green

1.05 3.82 48 circle blue

1.09 4.00 55 triangle blue
Good Avg. 1.08 3.87 51.50

Fair Quality Icons
1.95 4.59 116 square black; square white;

checkers b-and-w
4.00 4.50 90 diagonal-left dark-gray;

stripes black;
diagonal-right gray

3.68 3.86 126 circle-large gray; stripes
black

4.05 3.36 101 rectangle gray; triangle
gray; circle-small gray

3.82 3.41 133 circle-small; gray circle;
gray stripes; black
diagonal black

3.09 3.73 85 rectangle gray; diagonal-left
gray; diagonal-right gray

2.64 3.50 73 circle-large gray; triangle
gray
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2.41 4.45 79 square black; diagonal
black; square white;
triangle black

3.05 3.68 105 oval-targ gray;
diagonal-right gray;
rectangle gray; stripes
gray

2.32 4.14 76 oval-targ gray; triangle
gray; circle gray

4.50 3.59 150 rectangle gray; rectangle
dark-gray; stripes black

2.95 4.09 103 rectangle gray; square
black; diagonal-right
black

Fair Avg. 3.20 3.91 103.08

Poor Quality Icons
4.14 1.32 106 square gray; circle-top

white; rectangle-btm
dark-gray; circle-btm
dark-gray

4.09 1.32 101 square gray; circle-top
dark-gray; circle-btm
white; rectangle-btm
dark-gray

3.86 1.95 103 circle-top dark-gray;
circle-btm white;
rectangle-btm dark-gray;
double-circle gray

4.00 2.14 114 circle-top white; circle-btm
white; rectangle-btm
dark-gray; triple-circle
white

4.00 2.09 118 circle-top white;
rectangle-top dark-gray;
circle-btm dark-gray;
double-bar dark-gray

3.95 1.82 100 square gray; rectangle-btm
dark-gray;
triple-diamond gray

4.05 1.55 93 square gray; circle-top
white; circle-btm
dark-gray;
double-diamond gray

4.14 2.68 113 square gray; rectangle-top
dark-gray; circle-btm
dark-gray; double-bar
dark-gray
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4.14 2.32 113 square gray; circle-top
white; circle-btm
dark-gray;
double-triangle gray

4.14 2.00 123 rectangle-top dark-gray;
circle-btm white;
horizontal dark-gray;
triple-bar dark-gray

4.27 1.73 104 circle-btm white; horizontal
dark-gray; triangle white

3.91 1.86 100 square gray; circle-btm
white; double-triangle
white

Poor Avg. 4.06 1.90 107.33
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