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Abstract 

A continuous motor task was reexamined to increase the 
fidelity of a previous model of the task. Previous modeling 
work was successful in matching qualitative performance, but 
not all aspects of the movement profile. When a new set of 
subjects were brought into the lab and eye-tracked, their 
motion data informed further modifications to the model’s 
performance strategy as well as changes to the ACT-R 
architecture. This in turn produced a model with a higher 
fidelity movement profile. The change in strategy modeled 
identified capabilities that could be implemented in future 
work as well as brought new inspiration to strategy 
refinement on this task.  

Keywords: Human motor movement; motor control; 
continuous motor task. 

Introduction 
Manual control and tracking tasks have been well 
researched in terms of two models, the “crossover” model 
and the optimal control theory model (Jagacinski & Flach, 
2003). These models have adequately explained human 
manual tracking in many contexts. In the age of automation, 
these tasks are becoming less frequent, but the ones that still 
occur are very important. For example, as new surgical tools 
are developed, new training regimens will have to be 
created for surgeons to learn how to use them. Inadequate 
training can have high costs, such as injury or loss of life. 
An additional motivating factor for creating good training 
regimens is that the amount of time it takes to learn a task is 
decreased, producing long term cost savings. Many of these 
tasks have interesting cognitive components as well as 
motor components, and the intersection of these components 
make it a rich research area. Cognitive models are especially 
useful in situations where there is a high cost for error and 
all of the components that comprise the optimal strategy for 
the task are not completely understood.  

The Task 
For our efforts we looked at a particular task that had been 
studied extensively by O’Malley and colleagues (O’Malley, 
et al., 2006; Li, Patoglu, & O’Malley, 2009; Huegel, et al., 
2009; Powell, 2010). The task layout is depicted in Figure 1. 
This task is a challenging motor control task but it is not a 
tracking task because the targets are stationary and the user 

generates the only movement. The task is scored on how 
many targets the subject can hit in a 20 second interval. 

 
Figure 1: The task configuration. m1 is controlled by the 

joystick; the goal is to alternate hitting the two targets with 
m2. m2 is attached to m1 by a spring with a spring constant k 

and a damping coefficient of b. 
 

The work done by O’Malley et al. initially focused on 
different training methods to improve the subjects’ 
performance on this task. All of the subjects were instructed 
that the optimal strategy for task performance was to move 
between two points on the screen that were symmetrical 
across the y-axis, at rate that corresponded to the natural 
frequency of the system. Symmetrical movements travel 
approximately the same distance on the target axis on either 
side of the y-axis. The stiffness and damping parameters 
determine the natural frequency of a system and in this case 
created a slightly underdamped system. When an 
underdamped system is excited at or near its natural 
frequency the output amplitude will be greater than the 
input amplitude. This allows the subjects to get a higher hit 
count while inputting less energy into the system. Subjects 
were then separated into groups to determine if different 
training methods affected their performance on the task. 
Some of the training methods that were employed were 
haptic feedback and visual cues. The results of the training 
studies did not support the use of any one particular training 
method to improve performance. However, the studies 



showed an interesting pattern of subjects’ learning over the 
sessions. 

When the data of the subjects’ hit performance was 
analyzed, three distinct groups appeared. The first group 
was the low performers, which were classified as such if 
their final score fell below one standard deviation from the 
mean. The subjects in this group started out with poor 
performance on the task and only made modest linear 
improvements over the experimental sessions. The 
movement profile for the low performers suggested that 
they tended to make a circular motion around the field, 
effectively swinging the coupled mass around to hit the 
targets. The second group of subjects was the high 
performers, which were classified as such if their initial 
performance was one standard deviation above the mean. 
The subjects in this group started out with good 
performance on the task and showed the same pattern of 
linear improvement over sessions. The movement profile for 
these subjects suggests that they moved along the target axis 
with minimal off-axis motion, exploiting the physics of the 
system to improve their performance to get over one target 
hit per second. The third group of subjects made up a group 
called the transitional group. This group started out with 
performance comparable to the low performers but ended up 
with performance comparable to the high performers. The 
learning curve that the transitional performers exhibited was 
better fit by a logarithmic function than a linear one. The 
movement profiles for the transitional group started 
similarly to the low performers and end up similarly to the 
high performers. What information the transitional subjects 
learned to change their performance from low to high is 
currently an open question. The three performance groups 
naturally formed in spite of the fact that all subjects were 
given the same instructions for optimal performance on the 
task. Figure 2 displays the performance of the three groups 
over the sessions. 

 

 
Figure 2. The mean hit count for the three different subject 

groups over session. Session 11 was a retention session. 

Previous Modeling Work 
The research done by Huegel (2009) included an in-depth 

analysis of the movement profile of the high performers. 

This allowed the model to be evaluated not only on the hit 
count, but also on whether or not the performance strategies 
matched. A Fourier analysis of the high performers’ 
movement profile showed that they moved at a consistent 
frequency that was either at or slightly higher than the 
natural frequency of the system. This allowed the high 
performers to have a higher hit count without losing control 
of the system. Huegel’s analysis also found that the high 
performers’ motion was regular, symmetrical, and almost 
entirely on axis. The on-axis movement and highly regular 
motion explained most of the variance in the number of 
target hits between individuals and between sessions. These 
two variables were only weakly correlated with each other 
and they appear to be separable components of the task. 
Additionally, the high performers also made an initial ramp-
up movement to excite the system and get a target hit on the 
first motion, increasing their hit count across trials. 

A number of modifications were made to the ACT-R 
architecture so that the expert performance on the spring-
target task could be modeled. The modifications made were 
to the manner ACT-R moved the mouse, the output of the 
aimed movement, and how ACT-R handles movement to 
targets not drawn on the screen (Byrne et. al. 2010). The 
minimum jerk velocity profile was implemented because of 
past success modeling reaching and aimed movement with it 
(Hogan, 1984). With these modifications to ACT-R in 
place, a model of the central tendency of the high 
performers was constructed. This model utilizes the same 
strategy that Huegel’s high performers were instructed to 
use. The model regularly oscillates between two points 
along the target axis. These two points were called virtual 
targets and they are represented by squares of a specific size 
with a constant center. The virtual targets were positioned 
along the target axis and symmetrically across the y-axis 
and so that the movement between the two targets was at the 
natural frequency of the system. The virtual targets are not 
visually represented on the screen and make use of the 
imaginal buffer in ACT-R. Visual attention shifted between 
these two points with the movement even though there was 
no visual representation of the target. Over the course of 200 
runs of the model, a mean hit count of 23.96 hits per 20-
second trial was achieved. The largest mean for the high 
performers in sessions 10 was 25.35. There is a 5% 
difference between the model’s performance and the human 
performance. In addition to the lower hit count this model 
has some discrepancies in performance compared to the 
high performers in Huegel’s study, mainly in end point 
noise. ACT-R currently uses a Gaussian distribution for on-
axis and off-axis error while the subjects have smaller off-
axis error than the model would predict. 

After creating a model that can perform as well as the 
high performers at the end of the task, efforts were focused 
on creating a model that would refine its strategy and 
produce the same learning pattern as the high performers. 
The learning models used the same strategy of oscillating 
between virtual targets but employed different means of 
refining the strategy to improve performance. The first 



method of strategy refinement was to have the model learn 
the size of the virtual target. The model would start with a 
random size for the virtual target that generated stable 
performance and would increase the size, decrease the size, 
or keep the size the same. The second method of strategy 
refinement was to give the model a set of competing virtual 
target locations and have it learn which target locations were 
the optimal ones to move to. For the learning models, a 
slightly lower performance would be expected because the 
ramp up function was excluded, but neither of these models 
was able to achieve the same strategy refinement over the 
simulated sessions as the high performers. The model that 
learned the size of the virtual target would occasionally 
generate good performance for a trial but over the simulated 
sessions would not converge to a stable target size. The 
model that learned the locations of the virtual targets started 
with performance that was similar to the high performing 
subjects during their first session but over the simulated 
sessions it was unable to refine the strategy and 
performance never improved.  

The Experiment 
Due to the fact that neither of these learning strategies 
produced evidence of the model refining its strategy, the 
motion data was reexamined. The strategy being modeled 
was reevaluated as some evidence suggested that even 
though the subjects were given a particular strategy to use, 
they might be using a different strategy, such as monitoring 
the physics of the system rather than moving between 
virtual locations. A follow-up study, which eye-tracked high 
performing subjects, was run to gain insight into the task 
strategy they might be using. The patterns in the eye data 
were used to help determine whether the strategy might be 
similar to the model, which oscillates its visual attention 
between virtual targets, or an alternate strategy of 
monitoring the physics of the system. 

Method 
Subjects. Eleven subjects were identified as high 
performers from their performance in the final session of 
Powell’s study (2010). Five of the subjects participated in 
the eye-tracking study. All subjects were male, right handed 
and between 19-24 years old. The subjects received ten 
dollars for their participation. 

 
Apparatus. The experiment was run using a 1.8 GHz 
Macintosh G5 PowerPC running MAC OS 10.3.9. Stimuli 
for the experiment were displayed on a 19” Sony CRT 
monitor at a frame rate of 60 hz and a resolution of 1152 by 
864 pixels. Subjects were seated directly in front of the 
display and interacted using a mouse. The same machine 
was used for all participants. The eye tracker used was an 
ISCAN RK726/RK520 HighRes Pupil/CR tracker with a 
polhemus FASTRACK head tracker. Head-mounted optics 
and a sampling rate of 60 Hz were used in the experiment. 

 

Stimulus and Design. The stimulus was the spring target 
task described previously. Subjects were directed to get the 
most hits possible during each trial. Each subject did five 
practice trials and then 20 trials of the task. The practice 
trials were to get accustomed to the eye-tracker and mouse 
and for the subjects to reacquaint themselves with the task. 
Hit count, motion data, and video of the eye movements 
were collected during all trials. The practice trials were 
excluded from analysis.  

 
Procedure. When subjects arrived they were reminded of 
the task procedure and told to perform the task as they had 
done previously. They were then calibrated with the eye-
tracker and after a successful calibration the subject began 
the practice trials. After the task was over the subjects were 
debriefed and paid for their time. 

 Results 
The mean hit count of the subjects in the eye-tracking 
session was 19.78 with a standard deviation of 2.02 and a 
range from 6 to 27. In addition to the hit count the 
movement profiles of the subjects were examined. To 
analyze the movement profiles of the high performing 
subjects seven metrics were calculated for each trial. These 
metrics were amplitude, peak-to-peak amplitude, number of 
movements, trajectory error, total distance traveled, pause 
time between movements, and movement time. A 
correlational analysis showed that only two of the seven 
performance metrics reliably correlated with hit count. The 
first metric is the trajectory error (r = -.34, p = .002), 
measured as the number of pixels deviated from the target 
axis. The second variable is the peak-to-peak amplitude (r = 
.28, p = .005), measured as the distance traveled for each 
movement. The subjects employed a variety of visual 
strategies for monitoring the objects on the screen. Among 
these were oscillating between the targets, keeping the eyes 
fixed in the center of the screen, and oscillating between two 
points on the screen between the targets. In 46% of the trials 
recorded the subjects employed more than one visual 
strategy during the trial. To analyze the eye data each trial 
was classified according to which strategies the subject used 
during that trial by watching the playback. The visual 
strategy did not have a reliable relationship with hit count. 
Since the movement is harmonic, the peak velocity of the 
subject’s on axis movement was also evaluated to inform 
further design decisions. It was found to be higher than the 
model’s. The graph of on-axis velocity over time was 
examined for all subjects. For one trial, the subject’s mean 
peak velocity was 0.58 pixels per millisecond while the 
model’s mean peak velocity was 0.45 pixels per 
millisecond. 

Experiment Discussion 
Since the eye tracking session occurred six months after the 
subjects were trained on the task, the drop in performance 
was not unexpected as even a month after training the 
performance drops. An additional factor in the performance 



drop could be that, when the subjects were trained on the 
task they used a high quality haptic joystick and during the 
eye tracking session they used a computer mouse. This was 
due to the fact that we did not have access to the joystick 
and the ACT-R model uses a mouse. Even with these 
differences in environment, differences between the model’s 
behavior and the subject’s behavior became evident during 
the analysis.  

Since the peak velocity of the model movement is bound 
by Fitts’ Law and was lower than the subjects’, to have the 
model move faster the virtual target size needs to increase, 
the distance between the virtual targets needs to decrease, or 
both. With a faster velocity the model will be able to make 
more movements and get more hits during the twenty 
seconds of the trial. To be able to increase the virtual target 
size a better model of the end point error distribution is 
needed to not introduce more off-axis error, which is 
moderately correlated with hit count. Additionally the 
relationship between the peak-to-peak amplitude and hit 
count indicated that the model needed to be changed so that 
it does not make symmetrical movements across the 
midpoint of the target axis. As non-symmetrical movements 
are not bound to a single point across the axis, the model 
has an increased number of virtual targets it is able to move 
to. This makes it possible for the model to produce 
movements of more consistent peak-to-peak amplitude and 
in some cases shorter movements. The ability to make 
movements more frequently will contribute to a higher hit 
count. 

Modeling 
The two metrics that had a reliable relationship with hit 

count informed the efforts to modify the model to be more 
in line with the central tendency of the subjects’ behavior. 
The following describes modifications to how ACT-R 
handles the endpoint error model of a movement and how 
the model’s behavior was changed to make non-
symmetrical movements across the axis. 

End Point Error Model 
When a target is clicked on, very rarely is it clicked on in 

the exact center. May (2012) studied where the final landing 
point is for symmetrical two-dimensional targets. The model 
separates endpoint error into two components, on-axis and 
off-axis error. The on-axis error is measured by how far 
from the center of the target the end point is on the axis of 
approach. The off-axis error is measured as the distance 
from the center of the target on the axis that is perpendicular 
to the axis of approach. May found that the end point error 
distribution is wider for on-axis movement than for off-axis 
movement. The on-axis end point error is distributed 
normally with a 96% accuracy rate across the effective 
width of the distribution. The off-axis end point error has 
the same distribution but is scaled to be over only 75% of 
the off-axis target width. 

The current implementation of end point error in ACT-R 
does not distinguish between on-axis and off-axis error. The 

method samples from a logistic distribution where 96% of it 
is half the target width. The randomly sampled value 
becomes the magnitude of the error. A vector of this 
magnitude is then added to the center of the error in a 
random direction. Modifying how noise is added to the 
ending position of the mouse movement to be more in line 
with the model of May is advantageous to modeling this 
task as large off-axis error is detrimental to achieving a high 
hit count on the task. Since the high performers have low 
off-axis error this model of end point error distribution 
allows the model to make quicker movements because the 
target width can be increased without the model’s 
performance suffering from more off-axis error. 

The model of expert behavior was modified to use virtual 
targets of a size of 19 pixels increased from the previous 
size of 14 pixels. This size increase was selected so that 
75% of the off-axis width of the new virtual targets was 
approximately 96% of the off-axis width of the previous 
virtual target size used. This modification allows the model 
to make faster movements, as the target is larger, while not 
increase the amount of off-axis error and reducing hit count 
because the effective error size is the same when using the 
different end point error distribution. 

Non-Symmetrical Movement 
Non-symmetrical movements means that the distance 

traveled on either side of the y-axis does not have to be the 
same. To create non-symmetrical movements in the model a 
set of fourteen virtual targets were defined. Half of the 
virtual targets were on the left side of the midpoint of the 
target axis and the other half were on the right side. The 
virtual targets covered the majority of the range of end 
points that the subjects generated during the experiment. 
The area of the virtual targets overlapped so that there were 
no areas along the target axis within this range that had an 
extremely low probability of being selected. Figure 3 shows 
the subject generated endpoints in red and the virtual target 
locations in blue. Since these virtual targets covered a wide 
area a matching system was employed to keep the peak-to-
peak amplitude consistent between movements. The 
matching system ensured that only productions that were 
within the range of the optimal amplitude could be selected 
sequentially. For most virtual targets there were three 
possible virtual targets on the opposite side of the off-axis 
that could be the destination for the next movement. Each of 
these three virtual targets had an equal likelihood of being 
selected. Once a virtual target was selected for the next 
movement a new set of three virtual targets would be chosen 
from for the movement following. After the ramp up 
movement, all seven productions were equally likely to fire 
and only for movements after that was virtual target location 
restricted by the amplitude to the next virtual target.  

Results 
The movements of the model were made at a rate of 

approximately 1.4 Hz. The noise in the model was 
generated from both the end point distribution and the 



different time duration of perceptual motor operations. For 
the primitive operators, the standard noise setting in ACT-R 
was used with no parameter tuning. Over 200 runs of the 
model it produces a mean hit count of 24.93 hits per 20-
second trial with a standard deviation of 1.25 and a range 
from 22 to 27. For one run of the model the new mean peak 
velocity was 0.65 pixels per millisecond. 

 

 
Figure 3. The task layout with the movement endpoints and 
virtual target locations overlaid. The endpoints the subjects 
generated are shown in red and the area the virtual targets 

covered are outlined in blue.  

Discussion 
This model demonstrates that with additional capabilities in 
ACT-R’s motor module it is possible to model expert 
performance on this task after training. While there is only a 
small increase in hit count with these modifications to the 
original model there is greater consistency with the subject’s 
motion data. One of the first important characteristics of the 
new model’s movement is that it moves at a velocity that is 
similar to the subjects’. There is also greater variation in the 
velocity of the new model as there is more variation in the 
distance that it travels. Furthermore the trajectory of the new 
model has more noise than the previous model though not 
quite as much as the subjects (Figure 4). Modeling the 
correct trajectory and velocity profile is essential for gaining 
further understanding into task strategy and refinement.  

In continuing work, efforts to model learning on this task 
can be undertaken with a fresh perspective on the expert 
performer’s strategy. The previous efforts of attempting to 
model learning with a set of competing virtual targets had 
the targets bound symmetrically across the off-axis for a set 
of two movements. While the model produced no evidence 
of strategy refinement with this method, it generated 
performance that was stable and produced a hit count 
similar to the high performers during the first session. 

 

 

 
Figure 4. Three trajectories for trials with 22 hits. The top 

trajectory was generated by the previous model, the middle 
by the new model, and the bottom is one subject’s data. 

 



With the restriction of symmetrical movements lifted, a new 
method of strategy refinement can be tested. This strategy 
refinement could be learning the optimal movement 
amplitude, which would be represented by which pairs of 
virtual targets should be associated with each other rather 
than the strategy of which virtual targets should be moved to 
during the trial.  

While improved performance of modeling expert 
behavior on this task brings hope to modeling expert 
strategy refinement, this task highlights other types of 
movement that could be implemented in ACT-R to have a 
more complete model of human motor movement. 

Modeling low performers’ behavior on this task is not 
currently possible in ACT-R as low performers make curved 
movements rather than linear movements. While the 
Steering Law (Accot & Zhai, 1997) generates accurate 
predictions for the movement time along a curved path, 
there are competing theories as to the velocity profile that 
humans use to generate this type of movement. Modeling 
the strategy that the low performers use is also more 
difficult than modeling the high performers strategy. The 
high performers strategy of oscillating on-axis movement 
with little attention being paid to the system only required a 
few extensions to the architecture to implement in ACT-R. 
The low performers strategy of swinging the coupled mass 
around the field requires the model to pay attention to where 
the disc is on the screen in relation to the active target and 
for the model to have some knowledge of how the 
movement of the tool will affect the position of the mass. 
Not only are these movements not aimed, it is also unclear 
how the subject plans the movement path. Additional work 
into curved movement and path planning needs to be done 
to be able to extend ACT-R to have the capability to model 
the low performers on this task. 

The minimum jerk profile performs well on this task and 
has found success in describing human behavior on reaching 
tasks; it is limited in describing other types of movement. 
Another drawback is that it is smoother than the movements 
that humans actually make. For two separate movements 
that travel the same distance in the same amount of time it 
will generate the same velocity profile for both movements, 
which human subjects will rarely do. For more motor tasks 
to be modeled using ACT-R other velocity profiles will 
need to be implemented, especially in physics-based tasks 
like this one. A ballistic movement profile could also model 
the subject’s movement due to its similar shape in velocity 
profile but markedly different one on acceleration. As 
modeling extends beyond the point-and-click paradigm to 
tasks where continuous motion matters, different velocity 
profiles will need to be implemented to give a better 
understanding of task performance. There is rich potential 
for cognitive modeling to grow in the motor domain, not 
only in current capabilities but also in learning procedures, 
path planning, and other more difficult skills.  
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