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Abstract

The human visual system tends to group related objects in the
environment, allowing for more efficient use of attention, but
sometimes leading to critical errors in executing a task. ACT-
R’s vision module currently has no concept of visual group-
ing, per se. We present both theoretical and practical motiva-
tions for imbuing ACT-R with visual grouping processes, and
then walk through our implementation of a simple, minimally
disruptive, generally applicable, and extensible system for as-
signing visual objects groups based on proximity, accounting
for both spatial and temporal extension. Code is available and
implications are discussed for employing the visual grouping
system in ACT-R models. Finally, we discuss the system’s
limitations, extensibility, and its future development.
Keywords: cognitive modeling; visual grouping; UI; voting;
human factors; model generalizability

Introduction
The human visual system employs visual grouping to more
efficiently interact with the environment. Related elements
are considered together, enabling our cognitive systems to
shift attention to or away from groups of visual elements that
are related in some meaningful way. But, as with any human
system, there are kinks in how the visual grouping system
works that cause us to make occasional, sometimes critical,
errors in how we parse the world around us.

An example of how visual groups appear to impact task
performance lies in the literature on voting ballots, wherein
some research has been done demonstrating humans’ sen-
sitivity to the layout of the screen information over time.
A Brennan Center for Justice report titled “Better Ballots”
(Norden, Kimball, Quesenbery, & Chen, 2008) highlights a
variety of voting ballot designs that produced voting errors,
such as omitting a vote or voting twice. Figure 1 shows one
such “bad” ballot, wherein so many voters in one precinct
skipped a specific race on the second screen that it changed
the outcome of the congressional election. Initially, one
might suspect this error could be due to distraction by ex-
treme salience, such as the bold, colored header drawing the
attention down to the second race on the page. But according
to Greene (2010), the effect appeared to be due the number
or arrangement of races (and instructional elements) on the
previous screen:

While the highlighting of race headers did not reliably
predict initial omissions of the critical race, the number
of races presented on the first voting screen did: when
voters saw two races on the first screen, they were less
likely to omit the critical race on the following screen

than were voters who saw only a single race on the first
screen.

Indeed, it appears that the culprit in this particular bal-
lot was the difference in layouts between the two screens,
in which visual grouping processes presumably play a large
role.

As the ACT-R cognitive architecture (Anderson, 2007) is
often used in human factors applications for the purposes of
evaluating interfaces and predicting performance, we believe
this is precisely the sort of error ACT-R should have the ca-
pacity to predict. However, at present the ACT-R’s “visicon”
system, for all of its features, lacks any concept of visual
grouping– it simply lists all of the available visual objects in
isolation. Our intention with the present work is to implement
a simple, consistent, and transparent method of grouping vi-
sual elements in ACT-R that works for any task and does so
in a minimally invasive manner.

Motivations
Implementing a visual grouping algorithm for ACT-R has
both theoretical and practical value. On the side of theory,
these are well-documented processes that occur in human vi-
sion and if implemented correctly, can improve the validity
and plausibility of models written in ACT-R. In terms of prac-
tical value, making visual groups available to modelers would
offer more generalizable models, as well as a handful of con-
veniences for interacting with the visicon.

There is already much work on the human processes in-
volved in segmenting a visual scene into separate visual
groups. Rosenholtz et al. (2009) present a model that syn-
thesizes a variety of visual features to simulate human vi-
sual grouping. Those features include proximity, similarity of
color or luminance, continuity, and orientation, among others
(and offers a nice review of relevant research on each). Their
model:

“... translate[s] a complicated two-dimensional im-
age, in which segmentation is difficult, into a higher-
dimensional representation where straightforward meth-
ods yield good results. Our particular technique uses a
high-dimensional blur operation, which is simple to im-
plement and understand.”

Our work borrows– if not their specific techniques– their phi-
losophy by taking a handful of the features available in the
visicon and using them to perform a simple and clear process
to segment them into visual groups.
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Figure 1: Two screen captures from the 2006 Sarasota County electronic voting system (first screen on the left, second screen
on the right). So many voters failed to notice the race for U.S. Representative (top of right) that it changed the result of the
election for that race. This error is thought to be due to the layout not accounting for human error due to visual grouping.

The introduction of a visual grouping system also fixes
some problems and enhances some functionality in ACT-R
modeling. Models often need to search the visual environ-
ment for particular elements in order to proceed with their
tasks. Current modeling solutions for visual search tend to
involve either (a) searching for the nearest unattended visual
object, or (b) using specific SCREEN-X and SCREEN-Y co-
ordinates to restrict that search. These solutions tend to suf-
fice, but are problematic. In the first case, depending on the
scan-path already taken, the model may find a visual loca-
tion that is nowhere near the relevant section of the screen
simply because it has already examined other nearby ele-
ments. In the second case, we are hard-coding knowledge
of the screen layout, somewhat decreasing the model’s cog-
nitive plausibility and preventing it from generalizing across
screen layouts without continuously spoon-feeding it special
task knowledge. By introducing visual grouping, modelers
can both restrict visual search to a particular region of the
screen, and also build their models in such a way that the
model should be able to locate the task-relevant regions of the
screen regardless of their particular configuration and layout.

Visual grouping algorithm
In developing the visual grouping algorithm, we wanted a
method that would require the fewest parameters from the
modeler. An obvious, and potentially parameter-free, option
would be the well-established k-means clustering method. Im
et al. (2016) find success in developing a model of visual
grouping using k-means. However, early in development we
decided to go a different direction because: first, k-means and
other density-based clustering methods are best suited for dis-
plays featuring masses of simple points, whereas most tasks
modeled in ACT-R tend to involve more sparse, highly struc-
tured visual objects that possess width and height. Second,
these clustering algorithms also tend to involve an element

of randomness (e.g., bootstrapping) which can be quite frus-
trating for the purposes of writing and even understanding our
own models. Though it is possible there are some instabilities
in the way humans actually group visual objects, it is unclear
whether the kind of uncertainty produced by these clustering
algorithms would bear any resemblance to the uncertainty in
the human visual system.

Instead, we decided to start with a method that is more con-
sistent (for our modelers’ sake) and transparent (for our devel-
opers’ sake). In the same vein as Rozenholtz et al. (2009), we
seek to apply relatively simple, general methods to the task of
segmenting a visual scene into meaningful groups, provided
with the representation of the visual objects already present in
the ACT-R visicon. In the first version of our system, we ac-
count only for a visual object’s positional features, SCREEN-
X and SCREEN-Y, and its features of spatial extent, WIDTH
and HEIGHT. We then further propose a system for how these
visual groups propagate through time.

Interested readers can access our visual grouping code at
the following github repository:

https://github.com/john-k-lindstedt/visual-grouping-actr

Installation is as simple as dropping the visual-grouping.lisp
file into the user-loads folder within the ACT-R file tree. From
there, the modeler needs only to specify the grouping radius
and collision type desired, and the groups will be automati-
cally generated and seamlessly added to objects in the visi-
con.

Integration with ACT-R
Our implementation of the visual grouping algorithm func-
tions by intercepting the list of visual features for all of the el-
ements of the scene used by ACT-R before the visicon is con-
structed, determining the visual groups for those elements,
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Figure 2: Flow of information from the visual scene to the
visicon by default (left), and through our visual grouping sys-
tem (right). The process is purely additive, giving each visi-
con entry a GROUP slot, and not disturbing any of the others.

and then returning that list intact but with the new group in-
formation attached. ACT-R then constructs the visicon as nor-
mal, but each visual location now has a GROUP slot that can
be used in visual location requests like any other. Figure 2
illustrates this process.

Visual grouping by simple agglomeration
To determine which visual objects belong to which visual
groups, we use a method called “simple agglomeration.”
Each group begins with a single visual element and recur-
sively adds other nearby elements by checking for “colli-
sions”; i.e., whether any nearby elements are within a “group-
ing radius” (a parameter presently left to the modeler to ad-
just). Two methods of collision detection are available: point-
collision and box-collision. Ultimately, each object on the
screen is assigned a unique and arbitrary symbol correspond-
ing to its visual group.

Point collision method: Simple and fast grouping The
point-collision method is minimalist: simply check whether
the screen coordinates of two visual objects is within the
grouping radius:

point-collision(obj1, obj2, radius):
1. if distance(obj1,obj2) < radius,

obj1 and obj2 have collided,
return true

This method is simple to calculate, but does not account for
an object’s size on the screen. As such, it is best used when
objects are of similar sizes and shapes (i.e., singular char-
acters or symbols), or when the screen is very dynamic and
needs to update often. Figure 3 (top left) depicts this collision
method.

Box-collision method: Accounting for extension in space
Many objects in user interface displays have meaningful ex-
tension in space (text, buttons, images, etc), so we also imple-
mented a box-collision method that accounts for an object’s
width and height by determining if the nearest point on one
object’s bounding box is within the grouping radius of the
edges of another object’s bounding box:

box-collision(obj1, obj2, radius):
1. target = the nearest location to obj1

on the perimeter of obj2’s bounding box
2. check point-collision(corner, target) for

each corner of obj1’s bounding box
3. check if target is within radius of the

top, bottom, left, or right of obj1’s
bounding box

4. check whether target is overlapping with
obj1’s bounding box (just in case!)

5. if any of the above is true, obj2 and
obj2 have collided, return true

The box-collision method requires more computation, but
accounts for width and height in a more realistic way than the
point-collision method. In practice, both the point-collision
and box-collision methods are quite fast, and many tasks
modeled in ACT-R (especially user interface tasks) involve
static displays with relatively few elements. As such, we rec-
ommend the box-collision method over the point-collision for
most applications. Figure 3 (top right) depicts this collision
method.

Growing visual groups via simple agglomeration The
simple agglomeration method begins with a visual group con-
taining a single visual object and then “grows” that group by
iteratively adding nearby points until none remain within the
grouping radius. Then a new, unexamined visual object is
selected, and the process is repeated until every object is as-
signed a group:

grouping(scene):
1. find an unexamined point, a, in the scene
2. find another unexamined point, b, in the

scene
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Figure 3: The two methods of collision detection available. Point-collision (top-left) is relatively fast and simple in that it
involves a single comparison, examining whether the distance between two points is within the grouping radius. Box-collision
(top-right) is more complex, as it involves several more comparisons and detecting the nearest point on a neighboring visual
object’s bounding box, but it allows for all objects’ spatial extent to be considered when determining visual groups. The bottom
half of the figure illustrates the steps of the simple agglomeration grouping method.

3. if collide(a,b,r): add b to the group
4. grow the group by repeating steps 2 and 3

for each new point added until there are
no more nearby points

5. assign all members of the group a
new group-id

6. repeat steps 1-5 until all points in the
scene have been examined, and all points
now have an associated group-id

Figure 3 (bottom) depicts this process visually. Figure 4
shows a sample output of the visual grouping algorithm as
applied to a screen of our VoteBox system. It is notable that
the order in which points are added to groups is irrelevant– all
point collisions are mutual and group growth is both strictly
additive and exhaustive, so there is no “competition” to speak
of between groups.

Inheritance: visual grouping extended in time
We also want to allow visual groups to extend in time, lest
the model be forced to study a new set of visual groups every
time the display is processed. To achieve this, we employ the
same collision-detection method used in the simple agglom-
eration method to detect whether visual groups in a new scene
overlap with any known groups from the previous scene. We
achieve this with the following steps:

inheritance(current-scene, previous-scene):
1. count the number of unique group-wise

overlaps between each pair of groups in
current-scene and previous-scene

2. a current group inherits a previous
group’s group-id only if both the current

group and a previous group exclusively
overlap with one another

3. assign a new group-id if:
3a. the current group is new, i.e. it

does not overlap with any previous groups
3b. the current group is the result

of a merge, i.e. it overlaps with more than
1 previous group

3c. the current group is the result
of a split, i.e. it overlaps with a previous
group that also overlaps with at least one
other current group

4. if a previous group overlaps with no current
groups, that group is dead and its group-id
will not propagate forward in time.

Note that, at present, we assume that the only way a group
can directly inherit a previous group’s identity is for both the
previous and current group to have mutually exclusive over-
lap. All other cases are considered to be “confusing,” and
generate new group IDs (likely triggering the model to need
to re-study the screen layout before proceeding). The tempo-
ral duration and propagation of these visual groups is an open
research question, which we discuss in the next section.

Figure 5 demonstrates how the visual groups would propa-
gate in an example bearing some resemblance to the Sarasota
ballots mentioned above. The ability for visual group identi-
ties to be inherited over subsequent scenes enables models to
make the same kinds of errors as voters did in the Sarasota
congressional election– when a task-critical section of the
screen (i.e., a congressional race) directly inherits its group
identity from a segment containing only task-adjacent infor-
mation (headers or instructions), the model can mistakenly
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Figure 4: An example outcome of the visual grouping algorithm. The VoteBox task environment (left) is a relatively simple
display with visual elements distributed somewhat sparsely across the screen. The right depicts the VoteBox task environment
(dimmed) with the visual groups (colors) produced by the simple agglomeration method (grouping radius = 25 pixels) layered
over top. For each visual location, the points represent the position, the shaded boxes represent the width and height, and the
curved lines indicate the radius within which a box-collision occurs.

consider the task-critical segment as irrelevant and skip it en-
tirely.

Implications for modeling
One of our goals in developing a visual grouping algorithm
for the visicon was to provide functionality with as little dis-
ruption as possible to the way the ACT-R visicon works. As
such, our implementation is designed to work exclusively
with the information the visicon would already use, requir-
ing no custom-built devices whatsoever. We also wanted to
be sure the system was, by design, minimally disruptive to
existing models. Because the algorithm does not remove or
alter any information from the default visicon, modelers will
not need to rewrite any of their models in order to install and
start using the visual-grouping system.

Concerns for ease of use aside, modelers still must intro-
duce new routines to their models to make use of the vi-
sual groups provided. It is important to note that the group
IDs generated by the visual grouping system are intentionally
generic and anonymous, meaning they strictly cannot impart
any task-relevant information. Instead, models will need to
use knowledge of the task at hand (such as labels of relevant
buttons and information about the stimuli expected) to study
the scene and commit to memory (i.e., the imaginal buffer)
the relevant visual groups in the scene. Models will also need
to return to this state to re-study the scene should the interface
undergo any radical changes between parts of the task.

In exchange for the effort of having to study the screen,
models will no longer need to be imparted with special
knowledge about relevant screen locations, thereby becoming
inherently more robust to changes in the layout of the screen–
so long as the same buttons are used and the same kinds of in-
formation are presented, a model that studies the screen first
will always know how to do its task.

Figure 5: Sample scenario demonstrating how visual group-
ing would play out over multiple scenes in sequence. The first
scene consists of an instructional portion and a task portion,
assigned groups #G1 and #G2 respectively. In the second
scene, task 2 inherits #G1 (the same group as the instruc-
tions, likely causing the model to skip task 2 entirely), and
task 3 inherits #G2, despite being slightly offset from task 1.
In scene 3, task 4 is considered the result of a merge between
tasks 2 and 3, and is assigned the new group #G3, while task
5 is in a position that does not overlap with anything from the
previous scene, so it receives the new group #G4. Finally, in
scene 4, both tasks 6 and 7 are considered the result of a split
from task 4 and receive the new groups #G5 and #G6, while
group #G4 expires due to overlapping with no other groups.
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Future directions
This visual grouping algorithm is meant to be a “first draft,”
initially aimed at addressing a handful of specific human error
phenomena in the relatively simple domain of voting system
usability. There is much work yet to be done, and many di-
rections available for further development.

Currently, the appropriate grouping radius is left up to the
modeler to determine, likely through trial and error (clearly
not ideal). To provide a better default value for this radius–
or an equation for finding one– questions such as “are group-
ings sensitive to scale?” and “what is the role of the retina?”
will need answers either from a deeper delve into the visual
grouping literature or by performing a battery of simple em-
pirical studies.

Similarly, many questions remain about how exactly group
inheritance functions. Currently, we assume that phenom-
ena like splitting or merging two groups results in a sort of
“confusion” for the model, so a new group label is applied.
Instead it may be the case that there ought to be a “winner”
in such an event: perhaps the largest group inherits? Or the
group with the most overlap? Other questions about inheri-
tance include: do group identities have any sort of “memory,”
recovering after a period of not being present? Are groups
always constructed the same way, or is there an element of
uncertainty we need to capture? Under what circumstances
do we perceive visual groups as having “moved,” rather than
as two distinct groups? Do these processes function the same
way when the screen is updating in real time as opposed to
static, self-paced scenes? Simple empirical studies can illu-
minate how visual groups propagate forward in time, and eye
tracking studies will help to illuminate what triggers humans
to begin re-studying the screen.

We would also like to expand the scope of the visual fea-
tures available for determining groupings beyond simple po-
sition and spatial extent. We believe our efforts are compati-
ble with Rosenholtz et al.’s (2009) model, and as such we can
tap into the existing literature on visual grouping, and their
model in particular, to achieve even more robust visual group-
ings using a wider array of visual features, such as: contrast,
color, luminance, orientation, continuity, etc. Representing
these features, as well as SCREEN-X and SCREEN-Y, as a
vector of numerical values would allow us to use a nearly
identical measure of euclidean distance to detect “collisions”
and classify groups in more interesting ways than simple spa-
tial proximity.

We will also need to investigate to what extent humans
employ hierarchical grouping. Dividing lines and contain-
ing boxes are commonly used by interface designers to par-
tition the screen (like those shown separating the sections in
Figure 1), but there are clearly smaller sub-groupings of in-
formation within those regions. Currently, our system can
achieve something to the effect of identifying super- and sub-
groupings by using more than one visual grouping radius,
though the method for determining those radii will require
thorough exploration.

Conclusion
Visual grouping processes help humans make sense of their
visual environment. ACT-R, by default, lacks any sense of vi-
sual grouping. We attempted to remedy this because both (a)
visual grouping is a well-documented phenomenon that ex-
plains certain elements of human behavior, and (b) the use of
visual grouping offers modelers some practical conveniences
and improvements to the generalizability of their models.

The visual grouping system we have implemented is a first
pass at the problem, but still succeeds in many ways: the sys-
tem is straightforward (we believe), it is minimally disrup-
tive to existing models, it is stable in that it always produces
the same visual groupings given a particular display, and it is
extensible. In particular, we see the ability for models em-
ploying visual grouping to generalize across different screen
configurations as a contribution to the overall plausibility of
cognitive models in ACT-R.

Future empirical work and reviews of the literature will
address: the extent to which the model can reproduce hu-
man errors on voting ballots, investigating the mathematical
nature of visual grouping, and expanding the capabilities of
the system to fit the needs of the modeling community. To
that end, we extend an open invitation to interested model-
ers to propose– or implement– any desired additional features
or alternative methods as we continue to develop this visual
grouping system.
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