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Motivation for Cognitive Modeling

o Recently become possible to evaluate psychological theories of
declarative memory on large-scale real-world tasks
®* Theories can now be tested on hundreds of millions to billions of
data points

©Now possible due to

Growth of social media and user created content

Publicly accessible large-scale datasets of user created content
Improved APIs and methods for extracting information
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¢ [mproved data mining software and faster hardware

(y/



Motivation for Cognitive Modeling

o These information rich large-scale environments provide unique
opportunities for research in declarative memory

o Can stress test and explore the impacts of the psychological
constraints of each theory on a much larger set of data than has
previously been possible

o Rapidly explore and evaluate different architectural constraints and
their impact on retrieval accuracy

©Begin to test the declarative memory equations on a scale that is
closer to the magnitude of chunks that are stored in human memory
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Motivation for Task

o Social media sites are composed almost entirely of human-
generated content

oThere’s a lot of it (over 400M tweets created per day)
¢|n addition to actively searching, users are subscribing to
information streams

* Followers and hashtags (Twitter), friends (Facebook), tags
(StackOverflow)

o To support a user on these sites, how can we quickly and
effectively connect users to the streams of content that they

care about?




General Approach

o Frame the task of choosing a tag as a memory retrieval problem
e Test how well two declarative memory theories can predict the
correct tags

o|f we can predict the chosen tags, then we can use this to
recommend to them new information streams that match their
Interests
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StackOverflow Example

|=I stackoverflow

Why this is undefined behavior?

A, My answer to this question was this function:

13 inline bool divisiblelS5(unsigned int x)
w |

331153 = (2732 - 1) / 15

/ /4008636143 = (2732) - 286331153
return x * 4008636143 <= 286331153;

}
It perfectly worked on my machine with VS2008 compiler, however here it doesn't work at all.

Does anyone has an idea, why it | get different results on different compilers? unsigned overflow isn't
undefined behavior.

Important note: after some test it was confirmed it is faster than taking the remainder of the division by 15.

c++ ¢ undefined-behavior

share | edit | flag edited 13 mins ago asked 54 mins ago
H2CO03 Mg User2623967
93.4k #1159 9127 22,033 #5029

Is this faster than (x % 15) == @ 7 — asveikau

| It doesn't show as undefined behavior to me? It probably integer overflows though. — PherricOxide

@asveikau depends on compiler optimizations — user2623967 s

Does x * 4008636143 fitinside an int? — andre

@millimoose Well... these are unsigned ints. The overflow behavior is specified. — Mysticial

show 9 more comments




o Analyze how a user’s tag history influences chosen hashtags
o Use StackOverflow and Twitter popular-users dataset

oUse ACT-R base-level learning equations to model data

o Full-enumeration search to find best-fit base level activation term
e Parameter might be specific to each user
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Datasets

o StackOverflow

e Used newest StackOverflow dataset released to public
Carved out 12 subsets of SO users across two dimensions: total
number of questions and reputation
Sampled at various levels of reputation (100k, 10k, 1k, ...) and total
number of questions (500, 400, 300, ...)
~500 users per subset

o Twitter
Carved out 12 subsets of Twitter users across two dimensions:
number of followers and total number of tweets
Sampled Twitter users at various levels of total popularity (10M,

1M, 100k, ...) and total number of tweets (1M, 100k, ...)

~100 users per subset




Common Name Equation

Base Level Activation B; = log Z?:l t;—¢
Optimized Learning B; = logy25 — d *x logL

oTwo different models: The standard equation and simplified form
o Simplified form assumes equal spacing of presentations within each
chunk, and consequently does not have to store every observation in DM

o Terms:
e t: Time since presentation of each chunk
e d: Decay rate parameter
* n: Number of presentations of chunk
e [: Time since first presentation of chunk

©QOL is set to default in ACT-R, d is almost always set to 0.5 OI I
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Model Name
. Standard Prior Model
. Optimized Learning Model

Twitter Top Tweets -

T -

SO Top Reputation

SO Top Questions
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Mean Accuracy




Model Name
. Standard Prior Model
. Optimized Learning Model

Twitter Top Tweets -

Twitter Top Followers -
SO Top Reputation

SO Top Questions -

0.25 0.50 0.75 1.00
Mean Optimal Decay Rate Parameter (d)
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o Surprising that retrieval accuracy is relatively high (34%) when
no context and only prior user tag history is taken into account
e Especially given the large tag space
e Highlights the importance of a user’s past tag history on future
tag selections

o Accuracy is not as high when OL form of equation is used
(29%)

e Hard to tell if OL form of equation is any better than a pure
frequency-based model, especially as total length of time
Increases

* Makes sense given that this equation collapses to frequency
model as time increases
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o Standard form of equation can be implemented efficiently
e Retrieval times much less than what is required for the co-
occurrence (context) component

o May be worthwhile to look into using the standard form of the
base-level learning equation for a broader range of tasks
* And increasing the decay rate slightly when doing so

© ACT-R’s base-level learning mechanism is further validated
e Efficiently handles large amounts of presentations (100k-1M per
dataset)
® Robust to noise inherent in messy real-world data (findings
consistent across subsets)
e Optimal d nicely blends frequency and recency information to

generate relatively accurate predictions ; n




¢ Add in contextual information for each model

o Evaluate two different models for computing activation based
on context: ACT-R’s strength of association and a vector-based
Implementation

o Attempt to incorporate strengths of each model into the other
* Word order from vector-based, base-level learning from ACT-R

o Explore and validate their performance space
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o Thanks for your time
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