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There is ample evidence that computer users often do not progress from novice to expert levels of
performance, particularly when efficiency is included in the definition of performance. This paper describes
a theoretical argument that one of the pieces missing in the understanding of this process is an accurate
assessment of how people calculate a cost/benefit analysis (CBA) of learning and using new techniques and
strategies. While there are many explanations for why people often do not use accurate methods of
calculating this ratio, there is little discussion describing why some people do. We suggest that an
important and predictable influence on whether an individual uses an accurate CBA is the observation of
others using efficient techniques. We propose that with a more full understanding of the CBA calculation
process, it will be possible to predict when users will and will not utilize a more efficient technique.

Expertise and the achievement of expert performance is a
broad field. Although much of the previous work in expertise
has provided important descriptions of expertise, the findings
are equivocal regarding the processes associated with
achieving this level of performance. The process of obtaining
expert performance with software programs is no exception,
particularly when efficiency is included in the definition of
expert performance (Bhavnani et al., 1996; Carroll & Rosson,
1987). This is important as one of the hallmarks of expert
levels of performance is often efficient performance, i.e.,
performing tasks with the least amount of effort and time
necessary. Although there is evidence that people can initiate
using efficient techniques with software (Charman & Howes,
2003) there is considerable evidence that given no guidance,
they do not (Lane, Napier, Peres, & Sdndor, 2005).

The goal of this paper is to offer a theoretical argument
that one of the pieces missing in the understanding of the
mechanisms associated with the utilization of efficient
techniques is an accurate assessment of how people calculate
the cost/benefit analysis (CBA) of learning and/or using
particular techniques with software. To describe our argument,
we will first illustrate that much of the previous literature has
either implied or overtly discussed that CBA is inherently part
of the process of acquiring new procedures with software. We
will further present that although previous work has
mentioned CBA, there has been little to no work to overtly
investigate or test the mechanisms associated with how CBA
occurs. Finally, we will present the beginnings of a plan of
research that is designed to investigate explicitly how people
perform CBA and most specifically how observing peers
influences this analysis. An important note is that we are
building on top of and explaining current evidence and
theoretical perspectives. Our position is not necessarily in
contrast to other theories, but is instead accounting for holes in
the current literature.

CBA is discussed in the GOMS (Goals Operators,
Methods, and Selection rules) family of techniques and
associated tools, which are widely used to evaluate the
efficiency of users of different systems (e.g., John & Kieras,
1994). GOMS tools/techniques are employed to predict and
describe the interaction of users and systems in terms of time,

strategy, and possibly errors. Selection rules specify which
Method should be used to satisfy a given Goal, based on the
context of the task. An assumption of Selection rules is that
users select the most efficient method to complete the goal.
However, it is often unclear what Selection rules people are
using. Further, users do not always select the most efficient
method available to them despite the assumption in the
selection rule aspect of the GOMS methodology that people
are performing a cost/benefit analysis, i.e. people are
evaluating the relative efficiency of the different methods.

An area where CBA is implied, although not directly
discussed, is in Carrol and Rosson’s “production paradox”
(1987). This is the notion that people generally do not want to
stop their work to learn new or more efficient techniques even
though it may be beneficial in the end, implying that users
weigh the benefits of acquiring new knowledge against the
costs to stopping their work. Some people nevertheless are
motivated to learn efficient methods and do take the time to do
so (Peres, Tamborello, Fleetwood, Chung, & Paige-Smith,
2004). Those people who learn efficient methods see
something beneficial in acquiring more knowledge than the
people who do not learn. However, it remains an open
question regarding how much benefit a person must perceive
before considering learning something new. An investigation
of the mechanics of CBA would allow for the explanation and
prediction of what is necessary for users to become efficient.

Fu and Gray (2004) attempt to resolve the production
paradox and suggest that people are cognitive misers by
nature, so they tend to: 1) use methods and strategies that have
cues and offer immediate feedback on the user’s progress
through the problem space; and 2) that apply in multiple
situations. For instance, previous work has shown that it is
faster to use the keyboard to issue commands (KICs), yet
people tend to use other, slower, methods for issuing
equivalent commands (Lane et al., 2005). In the alternate
methods, menus and icon toolbars, there is a general procedure
(move the mouse to locate/search for the command) and
interaction (the computer shows you commands and you see
the mouse cursor on the command as you issue it). With few
exceptions, KICs tend to be specific and do not offer
incremental feedback. People may develop inaccurate CBA



calculations because they overvalue the generalizability of
procedures and incremental feedback and undervalue the
efficiency that can be achieved with the use of more efficient
work strategies.

Bhavnani and his colleagues suggested that people are
inefficient with software because they do not know how to
integrate efficient methods of completing a task into their
current knowledge of the program (Bhavnani & John, 1997).
For instance, users may know that objects can be changed and
that more than one object can be selected at a time, but they
may not understand that it is possible to select multiple objects
and then change all of those objects simultaneously. To state
the problem in GOMS’s terms, people may not possess the
selection rules that allow them to operate efficiently, even
though they possess knowledge of the methods. As a
remediation for this, Bhavnani and colleagues developed a
course that explicitly taught students how to employ more
efficient methods of using software programs. The course has
been successful at increasing individuals’ use of efficient
methods across several programs (Thomas & Foster, 2001),
but the authors did not specify what change in the users’
selection rules might have taken place to move them from
inefficient usage to efficient usage. Similar to the work done
by Carrol and Rosson, the behavior (and even the remediation)
have been well described with Bhavnani’s work, but the
cognitive processes or mechanics that would allow for the
prediction of movement from inefficient to efficient
performance has not been outlined. It is conceivable that
through the course that explicitly taught efficient methods,
users’ CBA were influenced sufficiently to create selection
rules that resulted in more efficient performance. Once the
mechanisms associated with the development of efficient
selection rules have been mapped, it may be possible to
eventually apply them in predictive models that can instantiate
a theory of what is sufficient and necessary for someone to
make the transition from inefficient strategy selection to
efficient strategy selection.

One mechanism that has been associated with increased
efficiency is the observation of efficient users, often termed
peer learning. Evidence for learning from peers has been
obtained in several studies (Bhavnani et al., 1996) including
some recent work (Peres et al., 2004) finding that people who
use keyboard shortcuts are more likely to work with and/or
around others who use KICs. Given these findings, it is
conceivable that observing others using efficient techniques
may affect a user’s CBA and thus influence their selection
rules. If the findings that observing others influences a user’s
selection rules can be replicated and experimentally
manipulated, it could provide important insight into the
mechanisms associated with CBA and selection rules. One
possible mechanism could be that when a person observes
another person using a new specific technique, the observer
learns the new strategy. Alternatively, observing others may
reinforce previously known but perhaps forgotten knowledge.
Another facet may be that when people observe others using
efficient techniques, the learning process occurs just-in-time,
i.e. just when obtaining/reinforcing such knowledge is most
salient to the user’s current goals. If this is the case, then the

timing of the knowledge gained may be as important as the
conveying of the knowledge itself.

Reinforcing knowledge, particularly knowledge about the
costs and benefits of behaviors, appears to play an important
role when people change their behaviors. Indeed Janis and
Mann (1977) found that the weight people give to the benefits
of a behavior often influences their adoption of that behavior
more so than the weight assigned to the costs. This approach
suggests that in order to change their behavior, people may
need to raise their estimate of the benefits of engaging in that
behavior. Our study investigating the weightings of the pros
and the cons as a function of the use of KICs found that people
who were more likely to report using KICs also weighed the
pros more than the cons (Peres, Fleetwood, Yang, Tamborello,
& Paige-Smith, 2005). The peer learning paradigm described
previously may be an important way this shift in relative
weighting of pros and cons occurs. To test our theoretical
position that observing and learning efficient techniques from
peers causes a unique and substantial adjustment of the CBA,
we are currently investigating how observing others affects
people’s weighting of the pros and cons of using efficient
techniques. We expect that after observing others using
efficient techniques, those who do not normally use efficient
techniques will adjust their weighting of pros and cons to
more closely mirror those who normally do use efficient
techniques. Furthermore, we will experimentally manipulate
individuals’ observation of KICs to determine whether a
causal relationship exists between the observation of and
subsequent use of these techniques.

We will also employ cognitive modeling as methodology
for evaluating hypotheses about how knowledge of efficient
techniques, such as KICs, can be acquired by users and put
into practice. Cognitive architectures such as ACT-R
(Anderson & Lebiere, 1998) force the strategy selection aspect
of a model of human behavior to be explicitly accounted for.
In doing so one can elucidate the complex interaction between
learning, memory, and strategy selection on a particular task
with a given interface.

We plan to use ACT-R to provide a sufficiency proof that
the just-in-time hypothesis would produce the behavior
patterns seen in people. ACT-R is a computational cognitive
architecture which takes as inputs knowledge (both procedural
and declarative about how to do the task of interest) and a
simulated environment in which to run. It contains a variety of
computational mechanisms and the ultimate output of the
model is a time stamped series of behaviors including
individual attention shifts and saccades, speech output, button
presses, and the like.

In order to model such a process as selection rule learning
in ACT-R, we must take advantage of several of ACT-R’s
learning mechanisms, e.g. production compilation, instance-
based learning, production utility learning, base-level learning,
and a newly developed mechanism, production induction
(Best, 2006). Other than production induction, these learning
mechanisms are well-established and have been applied in a
variety contexts and educational applications, such as list
memory (e.g. Altmann, 2000), skill acquisition (e.g. Taatgen
and Lee, 2003), category learning (e.g. Anderson and Betz,



2001), and the development of intelligent tutoring systems
(e.g. Anderson and Gluck, 2001).

One of the benefits of embodying a theory in a
computational architecture, such as ACT-R, is that it allows
researchers to develop and test concrete, quantitative
hypotheses and it forces the theorist to make virtually all
assumptions explicit. To the extent that the model is able to
simulate human-like performance, the model provides a
sufficiency proof of the theory. As a first step towards
embodying our theory of efficient strategy selection, the
following section describes an outline for the ACT-R model
that we are proposing to build.

A model of technique learning and selection will operate
at two distinct levels, learning of new techniques and the
application of those techniques in practice. In the case of
learning KICs, we believe that the observation of others is an
important method of learning, and hence, the learning stage of
our model will focus on this type of observational learning.

During the learning stage of the process (Figure 1), as the
model observes an “actor” (be it another model or a human
interacting with a system) performing some task, it will follow
along with the task by going through the same process (in
ACT-R terms, the same sequence of “productions” will fire).
When the actor demonstrates a new method of performing a
task for which the model has no corresponding process, the
model will create the declarative and procedural knowledge
corresponding to the new method. In ACT-R, this corresponds
to creating a new “chunk” (e.g. the shortcut for pasting text is
to push the “control” and the “v” keys), and a new production
to recall that process (chunk) the next time the same task is
encountered (a process known as “production induction” in
ACT-R).

Using production induction in this manner implies an
important benefit of learning via observation. In the just-
described scenario, the new procedural knowledge
corresponding to how to use a new method of completing a
task (e.g. use shortcut “control + v”) is inserted into the larger
decision process just at the moment when the need to apply a
method for completing the task is encountered. Hence, the
next time the model encounters the need to paste text, and
must determine a method for completing the task, there are
two methods associated with that need. In contrast, if the
model, or a person, were told of a shortcut either well-before
or well-after it was needed, that knowledge would not
necessarily be inserted into the model’s decision structure at
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Figure 1. The Learning stage of the proposed model.

the exact moment where it was needed. Interestingly, this lack
of timeliness in learning efficient software techniques may be
why many people fail to learn them as discussed previously.

At the action stage of the process, when the model is
required to perform the task, there now is an additional
method of completing the task that it learned from
observation. As new methods of performing the task are
learned, there may be multiple methods available to the model
to perform the task (Figure 2). These methods may compete in
ACT-R’s “conflict resolution” process. Which method is
chosen is based on the time cost of the method, with the
method with the lowest time cost generally being chosen
(some noise in the system lends stochasticity to the conflict
resolution process).

The time cost associated with a method is calculated as
the time from when the model determines that its next goal is
to paste text to when that goal is successfully completed. The

When the model has multiple methods
For completing a task, they compete
for selection.

Figure 2. When multiple methods are available to complete a task.



first time a method is observed the time cost associated with
that method is the observed time, i.e. the time it took the actor
to complete the method. This provides a high likelihood that
the method will be tried at least one other time if the observed
method is faster than an older, competing method. Successive
uses of the method will then contribute to an average time cost
associated with that method. Hence, if the method is indeed
faster than alternative methods, it should become the preferred
method of completing the task. It should be noted that time
cost may not be the only “cost” associated with learning a new
method. There may also be other cognitive or physical costs
associated with learning new methods. However, time cost
provides a simple, quantifiable metric on which to base our
first version of a model of efficient strategy selection and
learning via observation.

With repeated use, a method can be further streamlined
via ACT-R’s production compilation mechanism, thereby
increasing its efficiency and its likelihood of being selected in
the conflict resolution process (Figure 3). For instance, a
newly observed method for performing a task via a keyboard
shortcut will require the model to recall the shortcut from
declarative memory before performing the shortcut. Through
production compilation it is possible that if the method is used
repeatedly, then the step of retrieving the shortcut from long-
term memory may be skipped, and once the need to perform
the shortcut is recognized by the model, it may quickly
perform the required key presses. It is important to note that
the model, as described, is theoretical at this point. The
description provided here is the basis for work currently
underway to implement it in ACT-R.

To the extent that an ACT-R modeling effort is
successful in developing an experimental paradigm that can
elicit some of the inefficient behaviors reported in the
literature reviewed above, that paradigm will be used to
collect data from human users. Once an experimental
manipulation is developed that can reliably influence the
efficiency of user behavior, that paradigm will then be adapted
for use in an fMRI study. Brain imaging will allow for the
collection of converging evidence, such as perhaps differing
degrees of blood oxygen level dependent response (BOLD) in
the anterior cingulate cortex, which previously has been
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Figure 3. Example of production compilation in the model.

implicated in action monitoring and error detection (Magno,
Foxe, Molholm, Robertson, & Garavan, 2006). It is possible
that people who perform inefficiently never compute an error
signal to the effect that they could be performing better, i.e.
more efficiently.

Furthermore, since work performed by Anderson and
colleagues (2004) has already provided strong evidence for
functional relationships between ACT-R’s modules and
human brain regions, it is conceivable that a strong theory of
efficient human performance could be built using converging
behavioral, modeling, and imaging data.

In conclusion, we acknowledge that other mechanisms
could be associated with the development of efficient selection
rules. For example, it could be that the cognitive cost
associated with remembering to use a new technique has more
influence on the selection rule than the benefit of a more
efficient technique. Another mechanism that may be
associated with this is how well-learned the inefficient
technique is that the efficient technique would be replacing.
We submit that there is sufficient evidence to support our
position that people often utilize faulty CBA when using
software programs. We further submit that this is reflected in
faulty selection rules as described by the GOMS modeling
paradigm. Thus, the mechanism of peer-learning is the first
mechanism we plan to investigate and with further research,
we plan to incorporate other potential mechanisms that
facilitate, and in fact, predict, the transition from inefficient to
efficient use of software.

Thus, the essence of our theoretical position is that much
of the findings in the literature to date on the acquisition of
expert performance with software (or rather the lack thereof)
may be more fully explained with the incorporation of how the
findings relate and predict a user’s CBA. From Carroll and
Rosson’s seminal work on the Paradox of the Active user
(1987) to Gray and Fu’s (2004) most recent work on the
selection strategies associated with sub-optimal selection
rules, the results strongly suggest that a sub-optimal analysis
of the costs and benefits of a particular behavior is occurring.
The recurring theme of improved levels of performance being
associated with peer learning suggest that there are cognitive
mechanisms involved in this type of learning that are not fully
understood. As we develop a theory of how people transition
from novice to expert levels of performance, we hope to
encourage computer users to select more efficient strategies
for interface interaction, potentially through the development
of training programs, intelligent system tutors, or even through
clever interface design.
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