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Abstract

Previous research [Fisher, D. L., & Tan, K. C. (1989). Visual displays: The highlighting paradox. Human Factors, 31(1), 17–30] sug-
gested that making certain items visually salient, or highlighting, can speed performance in visual search tasks. But interface designers
cannot always anticipate users’ intended targets, and highlighting non-target items can lead to performance decrements. An experiment
presented suggests that people attend to highlighting less than what an algebraic visual search model of highlighted displays [Fisher, D.
L., Coury, B. G., Tengs, T. O., & Duffy, S. A. (1989). Minimizing the time to search visual displays: The role of highlighting. Human

Factors, 31(2), 167–182] predicts. Users adjust their visual search strategies by probability-matching to their visual environment. An
ACT-R [Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Quin, Y. (2004). An integrated theory of the mind.
Psychological Review, 111, 1036–1060] model reproduced the major effects of the experiment and suggests that learning in this task occurs
at very small cognitive and time scales.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Certain properties of our visual system make it so that
certain features, if easily distinguishable from the rest of
the visual field, can be especially salient. This visual salience
can be harnessed in the form of highlighting to make the
visual search component of an information search task more
efficient. Yet it is not always easy for the designers of visual
interfaces to anticipate the particular target a user may be
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searching for in a particular context, and it is not clear what
the detriments of misleading highlighting may be.

Most investigators agree that certain fundamental fea-
tures of visual stimuli (such as color, brightness, and move-
ment) are processed in parallel relatively early in the visual
pathway of humans (Treisman & Gelade, 1980; Wolfe,
1994). Given a visual search task, the item that can be dis-
tinguished by one of those basic features tends to ‘‘pop
out’’ from the field of other stimuli. For example, when
searching through a field of green objects, the time to find
a red object remains roughly the same no matter how many
distractor green objects are present. If, however, the target
item can only be distinguished by a conjunction of features
(such as a certain color and shape combination), then
visual search will be slower and more effortful.

Wolfe’s Guided Search 2.0 (1994) theory of visual atten-
tion postulates a bottom-up process which filters stimuli
through broadly-tuned ‘‘categorical’’ channels. Each of
these channels processes a certain dimension of visual
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stimuli, such as color or orientation. The output of these
channels, based on local differences in the stimuli, is then
integrated with top-down task demands to compute a fea-
ture map for each stimulus dimension. The top-down com-
mands to the feature maps activate locations possessing
specific categorical attributes relevant to task demands,
such as ‘‘activate ‘red’ objects.’’ The weighted sum of these
feature maps forms the activation map, with the weightings
being based upon task demands.

Attention deploys limited capacity resources to locations
in order of decreasing activation. Visual salience, then, is
this combination of bottom-up local difference calculations
and top-down, task demand-driven commands. Although
Guided Search 2.0 does take into account ‘‘top-down’’ guid-
ance of visual search, it says nothing about learning in visual
search tasks. That is, how might a human learn about the
relative helpfulness of visual cues, and how might that learn-
ing be reflected in human performance?

Highlighting by color can be an effective means to har-
ness the computational power of the visual system to aid
visual search. Fisher and Tan (1989) performed two exper-
iments assessing the effects of highlighting types and validity
on search times. Subjects searched for a target digit in a hor-
izontal array of five digits, one of which was the target. The
target was always the digit 1, 2, 3, or 4 (chosen at random on
each trial), and the distractors were always selected from the
digits 5 through 9. Experiment 1 had four highlighting con-
ditions: control (no highlighting), highlighting by color, by
reverse video, and by blinking. Additionally, when high-
lighting was present, the target was highlighted on 50% of
the trials, and one of the distractors was highlighted the
other 50% of the time. The term ‘‘validity’’ will henceforth
be used to describe the proportion of trials on which the
highlighting correctly indicated the target. Their experiment
2 was identical, except that highlighting was 100% valid.

Fisher and Tan reported that when highlighting validity
was at 50% highlighting by the most effective means, color,
did not help participants find the target faster than they
found it in control trials (highlighting by other means made
subjects slower). Yet when highlighting was 100% valid,
subjects did find the target digit 192 ms faster in the color
condition than in the control condition. Furthermore,
when highlighting validity was 100%, subjects were 90 ms
faster on trials with valid color highlighting than they were
on trials with valid color highlighting at 50% validity. The
authors speculated that the difference in performance
occurred because subjects did not always initially attend
to the highlighted digit in Experiment 1, but did so in
Experiment 2 when they saw that highlighting was more
predictive of the items’ status as target or distractor.
Apparently participants had been making estimates of
the relative costs of attending to the highlighting or disre-
garding it. It was not clear from Fisher and Tan’s results
what would occur at other levels of validity and so our
experiment replicated and extended their results.

One other thing to consider is that people’s low-level
strategy selection is sensitive to the cost structure of their
environment (Gray & Fu, 2004; Gray, Sims, Fu, & Scho-
elles, 2006). While Gray and Fu manipulated the cost struc-
ture of their subjects’ environment by varying the time cost
associated with certain actions, we instead manipulated the
probability of information being helpful. It is not clear
exactly how Gray & Fu’s results would generalize to our
experiment’s probabilistic environment.

2. The experiment

The experiment replicated Fisher and Tan’s paradigm,
except that only color (red) highlighting was examined
and it was examined at multiple levels of validity. Fisher
and Tan found that subjects were fastest for targets in
the middle and roughly equally slow on both ends. This
is unsurprising since subjects began each trial with a center
fixation. Therefore effects of position were not examined,
though target position was randomized. Two experiments
were actually run, but will be presented in combination.

2.1. Method

2.1.1. Participants

One hundred eighty Rice University undergraduates
(57% female) participated for course credit. The partici-
pants had a mean age of 19.2 years (standard deviation
1.3). There were 20 subjects per condition. Participants
were not screened for color vision deficiency. Although
some 8% of the male population and 0.5% of the female
population may have some form of color vision anomaly
(Wolfe et al., 2006), even if a handful of subjects responded
in no way to highlighting it would only mean that their
data would tend to dilute effects of highlighting on normal
color visioned individuals. The rather robust effects of
highlighting reported in the results section, particularly
for main effect of trial type, obviate any cause for concern
from this issue.

2.1.2. Design

The experiment used a mixed design, with trial type as a
within-subjects variable: control (no highlighting), valid
highlighting, and invalid highlighting. Additionally, sub-
jects were assigned to one of nine validity proportion con-
ditions: 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%,
or 100% highlighting validity. Control trials comprised half
of all trials received by each subject. A person in the 75%
highlighting validity condition, for example, would receive
half control trials and half highlighted trials. Of the high-
lighted trials, 75% of those would have valid highlighting,
25% would have invalid highlighting. All three trial types
were distributed randomly within each trial block, and all
trial blocks had all trial types in the same proportions as
dictated by experimental condition.

2.1.3. Procedure

The subjects’ task was to, as quickly as possible without
making any mistakes, find the number in the display that
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Fig. 1. Mean RT as a function of validity condition.
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was less than five and immediately press the corresponding
key on the number row at the top of the keyboard. The
advantage to not telling subjects which target would appear
is that it forced subjects to really search the display. Any
errors could easily be identified and excluded from analysis
as such trials did not signify a successful search of the dis-
play. At the start of the trial, subjects viewed crosshairs for
500 ms at the intended fixation point in the center of the
computer screen. They subsequently viewed a horizontal
array of five different numerals. The numerals were printed
in black (red for highlighted items) 14-point Times New
Roman font on a 17-in. CRT computer monitor at a reso-
lution of 1024 by 768 pixels. At a typical viewing distance
of approximately 60 cm, the entire array subtended a visual
angle of approximately 8� from left side of the left-most
digit to the left side of the right-most digit. There was
approximately 2� of visual angle from the left side of one
digit to the left side of an adjacent digit.

The experiment consisted of six blocks of 64 trials, and
at the conclusion of each block participants were encour-
aged to rest for perhaps a minute or two before continuing
to the next block. Most participants completed the experi-
ment within 35 min. For each trial one digit from the
potential target set, {1 2 3 4} was chosen at random, while
four distractors from the distractor set {5 6 7 8 9} were also
chosen at random without replacement. One target was
present during every trial. The target and distractors were
sorted randomly. The array would disappear upon the sub-
ject’s key press, and one second later the next trial would
begin. In the event of an incorrect response, the computer
beeped and paused the experiment for two seconds. This
time penalty discouraged simple guessing.

2.2. Results and discussion

Subjects erred on 3140 of a total of 69,120 trials admin-
istered, or fewer than 5% of total trials. Analyses excluded
error data as errors on such a simple task do not reflect a
successful search of the display. Outliers were removed
prior to statistical analysis, and this was done both for sin-
gle trials and entire subjects. An outlier trial was defined as
a trial in which the response time was more than three stan-
dard deviations from the subject’s overall mean. Those
response times were replaced with the subject’s mean
response time. Each subject’s mean response time per con-
dition was similarly screened against the total mean
response time for all subjects, per condition. Any subject
whose mean response time was more than three standard
deviations from the total mean response time for all sub-
jects in more than one condition was considered an outlier
subject. Four such subjects were found, and their data were
removed from further analysis.

Fig. 1 summarizes the means for each validity percent-
age condition by trial type. There was an interaction of
trial type and validity condition such that as validity
increased, subjects became faster on valid trials and slower
on invalid trials, F(12, 258) = 16.22, p < 0.001. But there
was no main effect of validity condition on response times
(RT) for the control trial type, F(6, 129) = 1.14, p = 0.341.

Collapsing across validity conditions, subjects responded
to valid trials on average 51 ms faster than control trials,
for which they were 75 ms faster than invalid trials (linear
F(1,129) = 418.32, p < 0.001). Another way to look at
these data is to consider how sensitive subjects were to
the highlighting. If subjects always attended the highlighted
item first, then they should show fast RTs to valid trials
and slow RTs to invalid trials. If they ignored the high-
lighting, then these two RTs should be about the same.
Thus ‘‘sensitivity’’ was defined as the RT for invalid trials
minus the RT for valid trials. Subjects did indeed show
higher sensitivity at higher levels of validity. Note in
Fig. 1 how the lines for valid and invalid trials diverge
going from the 0% validity percentage condition to the
100% validity percentage condition. Furthermore, partici-
pants’ RTs showed sensitivity to trial type within the first
block, indicating that they immediately utilized the high-
lighting in their visual search.

Fig. 2 plots the effect of validity condition on sensitivity
in block 1 only. Note how the effect of validity on sensitiv-
ity is nearly linear: sensitivity increases as validity increases.
Within block 1, subjects in the 87.5% validity condition
were 201 ms more sensitive to trial validity than were sub-
jects in the 12.5% condition, an over fourfold difference.
ANOVA with linear contrast indicated an increasing effect
of validity condition such that subjects were more sensitive
to trial type the more often they encountered validly high-
lighted trials, F(1, 129) = 45.362, p < 0.001. Furthermore,
this trend held for all trial blocks, linear F(1,129) =
54.06, p < 0.001, though sensitivity did decline overall from
block one to block six, linear F(1, 129) = 12.90, p < 0.001
(see Fig. 3). That effect is driven by subjects getting faster
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on invalid trials (94 ms) to a greater degree than they get
faster on valid trials (47 ms), linear by linear interaction
effect F(1, 129) = 19.70, p < 0.001. There is some, albeit
unreliable, suggestion that this effect varied by highlighting
validity condition, interaction F(30, 645) = 1.46, p = 0.056.
Even if subjects did improve their performance at different
rates in different validity conditions, it is not clear what this
effect may signify.

The analysis of subjects’ sensitivity to highlighting indi-
cates that subjects learned rapidly whether or not they
could take advantage of highlighting in their visual search.
The more valid the highlighting was, the more subjects
used it and the faster their RTs for valid trials became –
and this was true even in the first block. However, as valid-
ity increased, so did the cost of using highlighting on the
occasions that it was invalid.

2.3. The algebraic model

Fisher, Coury, Tengs, and Duffy (1989) constructed an
algebraic model of this type of visual search in an attempt
to determine average search time for a target in displays
with or without highlighted items. The model computes
expected search times given total set size, highlighted subset
size, probability of the target being in the highlighted or
unhighlighted subsets, and probability that the subject
searches first in the highlighted or unhighlighted subset
(Eq. (1)). The authors concluded that a model accounting
for the observed variance of RT must capture highlighting
validity probability. When the display consists of a set of
discrete options, as in the Fisher and Tan (1989) paradigm,
then the average display search time is a probability mix-
ture of the time to find the target when the highlighted
options are searched first and the time to find the target
when the unhighlighted options are searched first. Fisher
et al.’s model assumes that users exhaustively search
through one subset before searching the other. This is an
important point that will be explored further in the ACT-
R models presented below.

EH½T � ¼ e ½ðhþ 1Þ=2�
Xh

i¼1

P ðOiÞ
" #

þ ½ðnþ hþ 1Þ=2�
(

�
Xn

i¼hþ1

P ðOiÞ
" #

þ nP ðOnþ1Þ
)
þ r ð1Þ

Eq. (1) states that the expected time to find the target given
that the subject searches first the highlighted set, EH[T], is
the sum of four quantities. The scaling quantity, e, is the
expected encoding time for each item. The first expression
inside the curly braces is the average number of highlighted
items searched through times the probability that the target
is present and highlighted. Note that in the present study’s
experiment the probability that the target is present in any
trial is 1. The second expression inside the curly braces is
average number of unhighlighted items searched times
the probability that the target is present but not high-
lighted. The third expression inside the curly braces is the
product of the conditional expected search time given that
the target is absent times the probability that the target is
absent. The fourth quantity is the expected response time,
in other words, the time required for the subject to decide
to press a certain button and then to execute that motor
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movement. The expected response time when the unhigh-
lighted options are searched first is similarly computed,
as shown in Eq. (2).

EH0 ½T � ¼ e ½ð2n� hþ 1Þ=2�
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i¼1

P ðOiÞ
" #

þ ½ðn� hþ 1Þ=2�
(

�
Xn

i¼hþ1

PðOiÞ
" #

þ nP ðOnþ1Þ
)
þ r ð2Þ

Assuming the display consists of a set of discrete options,
as it does in the above experiment, then the average display
search time can be derived. The total expected time to find
the target in the display is a sum of two expressions (Eq.
(3)). The first is the probability of searching first through
the highlighted subset times the expected time to find the
target when subjects search first through the set of high-
lighted options. The second is the probability of searching
first through the unhighlighted subset times the expected
time to find the target when subjects search first through
the set of unhighlighted options. In other words, it is the
sum of two expected values: the expected time to find the
target when the highlighted options are searched first and
the expected time to find the target when the unhighlighted
options are searched first.

E½T � ¼ pHEH½T � þ ð1� pHÞEH0 ½T � ð3Þ

Fisher et al. (1989) assume that pH (probability that sub-
jects search first through the highlighted subset) should
increase as the average time it takes to locate the target
by attending first to the unhighlighted options grows pro-
portionately larger than the average time it takes to locate
the target by attending first to the highlighted options (i.e.,
as the ratio EH0 ½T �=EH½T � increases). Eq. (4) is the function
they offer that satisfies that constraint.

pH ¼ 1� ef2:0ðEH0 ½T �=EH½T �Þg ð4Þ

Fisher et al. (1989) claimed their model fit data from
their experiment with a 36-item display when 1, 3, 6, or
12 items were highlighted, but people are often faced with
simpler displays. How well would the Fisher et al. model fit
data from the Fisher and Tan (1989) experiment, which
used a display of only 5 items?

Our instantiation of the Fisher et al. model assumes
50 ms to decide to attend highlighting at the beginning of
a trial, 85 ms to shift visual attention, 100 ms to decide to
attend a new location, and 150 ms to issue a response.
These latencies are based on the ACT-R durations for these
operations, which are reasonably well-established parame-
ters. Readers are invited to consult Anderson et al. (2004)
for a summary of ACT-R and the generalized theory of
human cognition it represents. Fig. 4 plots the predicted
mean RTs of Fisher et al.’s algebraic model of visual search
in the 5 · 1 array paradigm for trials with valid and invalid
highlighting. Also shown is data collected from human
subjects. Note that the algebraic model predicts a high-
lighting sensitivity in excess of 300 ms for even the low
validity percentage conditions, whereas the humans
showed sensitivity in these conditions more on the order
of 40 or 50 ms. Note also how the predicted RTs for valid
trials are approximately 350 ms less than those obtained.
Predicted RTs for invalid trials also were reliably less than
those obtained from humans, t(14) = 2.409, p = 0.030, and
the human RTs increased at a faster rate as a function of
increasing validity level, ANOVA with linear contrast on
highlighting validity F(1,14) = 5.803, p = 0.030.

The algebraic model computes pH, the probability that
the subject first examines the highlighted subset. Table 1
lists pH for each level of highlighting validity. When both
the total number of items and number of highlighted items
is low, as it is in this experiment, pH will always be high
because the random chance of finding the target in any
given position is high (20%). The high pH is what drives
the algebraic model to predict such fast times for valid tri-
als, and it may be that subjects are not as fast on valid trials
in low validity conditions because they are not so likely to
search the highlighted item first.

Humans are probably not so likely to search the high-
lighted item first in Fisher and Tan’s (1989) paradigm
because they do not possess perfect knowledge of the envi-
ronment’s highlighting validity, as Fisher et al.’s (1989)



Table 1
Values for pH given highlighting validity

Validity (%) PH

0.0 0.785
12.5 0.837
25.0 0.882
37.5 0.919
50.0 0.949
62.5 0.971
75.0 0.986
87.5 0.994

100.0 0.998

F.P. Tamborello II, M.D. Byrne / Cognitive Systems Research 8 (2007) 182–191 187
model does. In Fisher and Tan’s paradigm, humans can
only estimate highlighting validity by sampling it. Fisher
et al.’s model does not consider any means of sampling
probabilistic aspects of the environment. To better under-
stand the nature of human cognition situated in tasks such
as visual search of highlighted displays, a cognitive model
must be built that incorporates some degree of probability
sampling and learning. Probability sampling – testing the
environment so that one may learn about it – could occur
by occasionally acting contradictory to the optimal strat-
egy – always attending the highlighted item first when
validity is greater than 20% and never attending the high-
lighted item first when validity is less than 20%. When sam-
pling probable aspects of an environment a human would
occasionally attend first to an unhighlighted item even
though the normative strategy dictates that the highlighted
item should always be attended first whenever highlighting
validity exceeds 20%.

What contributes to the adaptability of human visual
search behavior in an environment where cues have some
probability of being helpful or hindering? Firstly, there
are probability sampling behaviors such as the behavior
just discussed. Secondly, given a fairly simple paradigm like
the digit search in a 5 · 1 array used by Fisher and Tan
(1989), there are a couple of decisions that could be made
by the user at a variety of different times throughout the
task. Users can potentially elect to attend or avoid the
highlighting each time they shift their visual attention,
though they might not actually make that decision that
often. Fisher et al.’s (1989) algebraic model does not
consider this possibility. Then there are issues of self-
evaluation of performance: do users evaluate their own
performance at the level of whole trials or some smaller
level, such as individual shifts of attention? Fisher et al.’s
algebraic model has no answer to offer for these questions.

An ACT-R model can shed some light on the above
questions. It can be programmed to instantiate behaviors
that sample probabilistic aspects of its environment and
it can modify its behaviors accordingly. It must be explic-
itly programmed to attend or avoid highlighting either with
every shift of attention or only the first one. It could also
evaluate its own performance at either a macro level (i.e.,
a full trial) or micro level (i.e., each shift of attention).
Two ACT-R models were constructed to compare to
Fisher et al.’s algebraic model and to make inferences
about people’s search behavior in reference to the micro
versus macro issues just discussed.

2.4. The ACT-R models

The ACT-R (Anderson et al., 2004) cognitive architec-
ture was used to construct two models of this task. The
two models, macro-level and micro-level, were identical
except in the level at which they learn: whole trials or indi-
vidual shifts of attention, respectively. On any given trial
with highlighting present, the models selected and fired
one of two productions which caused them to attend to
(‘‘attend-red’’) or avoid the red item (‘‘avoid-red’’).
‘‘Attend-red’’ made ACT-R move visual attention to the
red item. ‘‘Avoid-red’’ made it seek an unattended black
item. If the currently attended item was a target, ACT-R
output a press of the appropriate key.

If the item seen as a result of an attention shift was a dis-
tractor and the highlighted item had been attended, a pro-
duction, ‘‘highlighted-distractor’’, fired. This production
was marked as a failure in the micro-level model, but it
was left unmarked for the macro-level model. This mark-
ing/not marking of ‘‘highlighted-distractor’’ was the sole
and critical difference between the two models. If the red
item was still unattended, then ACT-R still had the
decision to make as to whether to attend to or avoid the
highlighting (‘‘avoided-red-distractor-find-red’’ and
‘‘avoided-red-distractor-find-black’’, respectively).

At the start of each highlighted trial, the ACT-R models,
visual-location buffer defaulted to a chunk describing the
location of the red item. This made the location of the
red item immediately available to the model and was meant
to mimic the pop-out effect of visual salience. In the case of
control trials, ACT-R had no red item to which to default
the visual-location buffer, so it simply fixated unattended
items until it found the target. Fig. 5 graphically depicts
the algorithm used by both ACT-R models. The models’
strategies for all cases was necessarily very simple because
of the constraint imposed by rapid human participant
response, approximately 700 ms on control trials. The
150 ms required for motor movement, the 185 ms required
to decide to move visual attention, to move visual atten-
tion, and to encode the new object simply left no time for
complicated cognitive strategies.

Production priors represent a method for ACT-R mod-
elers to specify biases toward and away from certain behav-
iors that humans may bring to the task of interest
(Anderson et al., 2004). Production priors for both ACT-
R models were set as in Table 2. The priors for ‘‘avoid-
red’’ were set equal to the random chance that the target
was in either the highlighted or unhighlighted subset,
20% chance for the highlighted group since one item would
be highlighted out of a total of five items in the display. Pri-
ors for ‘‘avoided-red-distractor-find-red’’ and ‘‘avoided-
red-distractor-find-black’’ were set equal to the random
chance that the target would be in either highlighted or



TRIAL START

The red item is in sight.
==>
Move visual attention to 
the red item.

The red item is in sight.
==>
Find a black item.

The currently 
attended item is a 
target.
==>
Press the appropriate 
key.

The value of the distractor slot of 
goal chunk is "yes".
==>
Find a new unattended item.

There is an unattended black item 
and the red item has been attended.
==>
Attend the black item.

The red item was avoided 
and there is an unattended 
black item.
==>
Attend to the black item.

There is no red item in sight.
==>
Find the nearest unattended 
item.

There is an unattended text 
item.
==>
Attend the text item.

There are no red items and 
the attended item is a 
distractor.
==>
Find an unattended item.

DONE

The currently attended item 
is black and a distractor, and 
the red item has not been 
attended.
==>
Find another black item.

The currently attended 
item is black and a 
distractor and the red 
item has not been 
attended.
==>
Find the red item.

The red item was not yet 
attended.
==>
Move visual attention to 
the red item.

The red item has not been 
attended and there are no 
more unattended black 
items.
==>
Find the red item.

CRITICAL PRODUCTION: 
"highlighted-distractor"
The attended item is a 
distractor and the red item 
has been attended (currently 
or previously).
==>
Change the goal chunk's 
distractor slot to "yes".

The currently attended
item is a target.

The currently attended item is a distractor

All black items 
have been attended.

Fig. 5. Algorithm employed by ACT-R models.

Table 2
Production priors for the ACT-R model

Production Successes Failures Initial utility

Attend-red 50 50 9.95
Avoid-red 80 20 15.90
Avoided-red-distractor-find-red 25 75 4.90
Avoided-red-distractor-find-black 75 25 14.90
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unhighlighted subset, given that one unhighlighted item
was already examined and found to be a distractor. The
probabilities for successes and failures for ‘‘attend-red’’
were originally set following the same rule, thus 20 suc-
cesses and 80 failures. But it was found that the model
did not attend the highlighted item often enough to gener-
ate a similar RT pattern to the human data. This could
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Fig. 6. Human data versus ACT-R models.
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imply that people may be inclined to check highlighted sub-
sets at rates greater than chance. This seems valid as a set
of starting assumptions about the expectations about high-
lighting subjects brought with them to the experiment given
a lack of measurement of the match between subjects’
information search goals over the course of their lives
and the highlighted items they have encountered. The pri-
ors were set to values between 10 and 100 such that the
model would start a run with some biases in the produc-
tions it chose, but not so biased as to be inflexible to learn-
ing new utilities over the course of the 384 trials.

One consequence of this set of priors is that the model is
slightly biased toward examining an unhighlighted item
first, but not as biased as if it were simply ignoring high-
lighting altogether and checking each item randomly.
ACT-R computes the utility of every production i using
Eq. (5), where Pi (Eq. (6)) is an estimate of the probability
that if production i is chosen the current goal will be
achieved, G is the value of that current goal, and Ci (Eq.
(7)) is an estimate of the cost (typically measured in sec-
onds) to achieve that goal (Anderson et al., 2004). ‘‘Suc-
cesses’’ is the total number of times a goal has been
achieved using production i, and likewise ‘‘Failures’’ is
the total number of times a goal has failed to be achieved
when production i has been applied. ‘‘Efforts’’ is the accu-
mulated time (seconds) over all the successful and failed
applications of production rule i. Successes, Failures, and
Efforts can all be set to simulate prior experience. Thus
‘‘attend-red’’’s utility started at 0.5 · 20 � 0.05 = 9.95 ver-
sus 15.90 for ‘‘avoid-red’’.

U i ¼ PiG� Ci ð5Þ

P i ¼
Successes

Successesþ Failures
ð6Þ

Ci ¼
Efforts

Successes þ Failures
ð7Þ

ACT-R uses the utility of a production to decide which
production to fire out of a set of competing productions
(the conflict set) that match the conditions of the internal
state of the model and the state of the outside world. The
probability that production i will be selected on the basis
of its utility, U, out of conflict set j is calculated with Eq.
(8), where t controls the noise in the utilities. Summation
is over all competing productions.

P i ¼
eUi=tPn
j eUj=t

ð8Þ

Two ACT-R models were used to explore the question:
When is an action a success or a failure? If learning occurs
at the macro (trial) level, all trials are successful because the
target is always eventually found. Learning, then, occurs
only as a result of a trial taking relatively more or less time
to complete. But if learning takes place at a micro level
(individual attention shifts), then all attention shifts to dis-
tractors are failures and only the attention shift to the tar-
get is a success. Learning only by time elapsed might not be
enough feedback to change behavior in the macro model. If
so, the model may need to register a failure every time it
shifts attention to a distractor, as it does in the micro
model.

At trial onset (highlighted trials), the models had two
competing productions: ‘‘attend-red’’ and ‘‘avoid-red’’.
Subsequent shifts of attention within the trial had similar
productions that competed to make the model either attend
to the highlighted item if it had not already, or else avoid
the highlighted item. The models were run with the
expected gain noise parameter set to 3 because it resulted
in the best fit to the human data. The utility threshold
was set to �100 to ensure a matching production always
fired.

Fig. 6 plots the mean RTs for human and the macro-
level model’s data, per trial type, per highlighting validity
percentage condition. Note that unlike the human data,
the macro-level model does not change sensitivity across
highlighting validity percentage conditions. Note that mean
RTs for valid trials are almost all in excess of 1000 ms while
mean RTs for invalid trials are all approximately 740 ms.
The macro-level model thus has a comparatively large
and inverted sensitivity function with respect to the human
data.

By contrast, the micro-level model unequivocally pro-
duced the better fit to the human data, r2 = 0.747,
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p < 0.001, mean deviation = 54 ms (Fig. 6). As highlighting
validity increased, valid trials became faster and invalid tri-
als became slower, as in the human data. It should be noted
that the two models used the same production priors and
same expected gain noise parameter, thus possibly not
resulting in the best possible fit to data for each model.
However, that fact only serves to illustrate our point: with
only one change creating a local learning mechanism, the
model’s learning behavior radically changes in such a
way as to enable it to go from being totally unable to mimic
the human data to being able to at least duplicate the basic
qualitative aspects, even if there are still problems in some
conditions. The reasons for these fit problems are specu-
lated upon in the general discussion section.

The one major flaw in the micro-level model is its poor
prediction of RTs for valid and invalid trials in low valid-
ity percentage conditions. Because it is too slow on such
trials, the model shows too much sensitivity in low validity
percentage conditions. More specifically, the model pre-
dicts RTs that are too slow for invalid trials at low valid-
ity levels, and does not increase enough as validity
increases. While we have determined that the micro-level
model actually does avoid red items all the way through
invalid trials in the low validity conditions, it is not readily
apparent why the model generates such slow RTs for these
trials. We hope that detailed examination of proportions
of firings of ‘‘attend-red’’, ‘‘avoid-red’’, and their subse-
quent shift of attention counterparts will yield clues as
to what the model is actually doing in these trials. Despite
this flaw, the model’s prediction of the effect of validity on
sensitivity does closely mimic that of the human data
(Fig. 7), r2 = 0.911, p = 0.004. The high correlation
between model sensitivity and human sensitivity may be
misleading because the model does fail to accurately pre-
dict RTs for low validity conditions and is generally
50 ms too fast for control trials. Despite this the model
succeeds very well in capturing the effect of validity condi-
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Fig. 7. Mean sensitivity for micro-level model and human data, across all
experiment blocks. Error bars depict standard error of the mean.
tion on sensitivity. The micro-level ACT-R model’s suc-
cessful capture of the sensitivity effect is important
because it allows the model to display the same qualitative
trends as humans: it generally gets faster for highlighted
trials as validity increases because it learns to attend to
the highlighting more. However as validity increases, so
does mean RT for invalid trials because the model more
often attends to highlighting, including the occasions
when highlighting is misleading.

3. General discussion

Fisher et al.’s (1989) algebraic model of visual search of
highlighted displays assumes that people do not always
check the highlighted subset first, but when the total search
space is small this model overestimates the degree to which
people do check that group first. The Fisher et al. model
failed because it did not consider human procedural learn-
ing situated in a probabilistic environment, particularly one
so small.

Why do people fail to behave optimally, to always
attend the highlighted item first when validity exceeds the
probability of finding the target by random chance? People
may be actively testing their environment so that they may
learn about it. The algebraic model fails to predict human
performance in a small search space because it does not
take into account the fact that people are sensitive to the
probabilistic structure of their environment.

Even in very simple experiments employing a probabilis-
tic environment that rewards optimizing behavior, people
tend to match the probabilities of their responses to out-
comes rather than optimize their behavior (Shanks, Tun-
ney, & McCarthy, 2002). In the Fisher and Tan (1989)
task those probabilities matter for costs and rewards
because a shift of attention to the wrong item leads to
wasted time. There is some evidence that ACT-R’s current
production utility learning algorithm does not appropri-
ately capture the dynamics of the environment with respect
to cost and reward (Gray et al., 2006), and that may be why
the model fits poorly in the low highlighting validity per-
centage conditions. Gray et al. claim that a reinforcement
production utility learning mechanism, ‘‘approximates
what would be expected if human cognition calculated
costs as if milliseconds mattered’’. In a world where indi-
viduals trials typically complete in three-quarters of a sec-
ond, milliseconds clearly do matter.

However, despite the aforementioned shortcomings, the
micro-level ACT-R model does exhibit sensitivity to the
probabilistic aspects of its environment to a similar degree
as the human subjects. ACT-R’s reinforcement mechanism
for learning production utilities is a promising and very
recent development. At this point it would be speculative
to make any claims about its performance in a task like
the one reported in this study, and such investigation
would represent a good next step for this project.

The ACT-R models reveal that people seem to make
decisions about attending and avoiding highlighting at
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the level of individual shifts of attention, rather than at the
level of an entire trial as in the Fisher et al. model. To do
that, people must evaluate their own performance at that
microscopic level. There is evidence from other similar
domains that events on such a small time scale do have
behavioral consequences (Gray & Fu, 2004). To some
degree, people are learning the probabilities with which
highlighting leads them to the target and they are using
that knowledge to exercise control over where they attend.
This learning and deciding where to attend at the micro
level may be people’s best way to take advantage of the
pop-out effect in an environment where what is visually
salient may not always be what they are looking for.
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