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ABSTRACT

Visual Displays: The Continuing Investigations of the Highlighting Paradox

by

Frank Tamborello

Previous research has suggested that making certain items visually salient, or high-

lighting, can speed performance in a visual search task. But designers of interfaces cannot 

always easily anticipate a user’s target, and highlighting items other than the target can be 

associated with performance decrements. Three experiments were performed which dem-

onstrated that people’s performance in a visual search task is differentially sensitive to 

highlighting’s predictiveness of target location. That sensitivity depends upon the propor-

tion of instances in which highlighting actually predicts target location. A cognitive 

model constructed using the ACT-R architecture inferred that people evaluate and adjust 

their visual search behavior at a very small level of the task. 
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INTRODUCTION

Certain properties of our visual processing system make it so that certain features, if 

easily distinguishable from the rest of the visual field, can be especially salient. This vis-

ual salience can be harnessed in the form of highlighting to make the visual search com-

ponent of an information search task more efficient. Yet it is not always easy for the de-

signers of visual interfaces to anticipate the particular target a user may be searching for 

in a particular context, and it is not clear what the detriments of invalid highlighting may 

be. The research proposed in this paper aims to examine issues of highlighting validity’s 

effects on a visual search task, and how people respond to varying levels of highlighting 

validity. 

Most investigators agree that certain fundamental features of visual stimuli (such as 

color, brightness, and movement) are processed in parallel relatively early in the visual 

pathway of humans (Treisman & Gelade, 1980; Wolfe, 1994). Given a visual search task, 

the item that can be distinguished by one of those basic features tends to “pop out” from 

the field of other stimuli. For example, when searching through a field of green T’s, the 

time to find a red T remains roughly the same no matter how many distractor green T’s 

are present. If, however, the target item can only be distinguished by a conjunction of fea-

tures (such as a certain color and brightness combination), then visual search will be 

slower and more effortful. 

Wolfe’s Guided Search 2.0 (1994) theory of visual attention postulates a bottom-up 

process which filters stimuli through broadly-tuned “categorical” channels. Each of these 

channels processes a certain dimension of visual stimuli, such as color or orientation. The 
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output of these channels, based on local differences in the stimuli, is then integrated with 

top-down task demands to compute a feature map for each stimulus dimension. The top-

down commands to the feature maps activate locations possessing specific categorical 

attributes relevant to task demands, such as “activate ‘red’ objects.” The weighted sum of 

these feature maps forms the activation map, with the weightings being based upon task 

demands. 

Attention deploys limited capacity resources to locations in order of decreasing acti-

vation. Visual salience, then, is this combination of bottom-up local difference calcula-

tions and top-down, task demand-driven commands. Wolfe actually instantiated his 

Guided Search 2.0 theory as a computational model of multiple types of visual search 

tasks. And although Guided Search 2.0 does take into account “top-down” guidance of 

visual search, it says nothing about learning. That is, how might a human learn about the 

relative helpfulness of visual cues, and how might that learning be reflected in human 

performance? 

Highlighting by color can be an effective means to harness the computational power 

of the visual system to aid visual search. Fisher and Tan (1989) performed two experi-

ments assessing the effects of highlighting types and validity on search times. Subjects 

searched for a target digit in a horizontal array of five digits, one of which was the target. 

The target was always the digit 1, 2, 3, or 4 (chosen at random), and the distractors were 

always the digits 5 through 9. Experiment 1 had four highlighting conditions: control (no 

highlighting), highlighting by color, by reverse video, and by blinking. Additionally, 

when highlighting was present, the target was highlighted on 50% of the trials, and one of 

the distractors was highlighted the other 50% of the time. The term “validity” will hence-
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forth be used to describe the proportion of trials on which the highlighting correctly indi-

cated the target. Their experiment 2 was identical, except that highlighting was 100% 

valid. 

Fisher and Tan reported that highlighting by the most effective means, color, did not 

help participants find the target faster than they found it in control trials when highlight-

ing validity was at 50% (highlighting by other means made subjects slower). Yet when 

highlighting was 100% valid, subjects did find the target digit 192 ms faster in the color 

condition than in the control condition. Furthermore, when highlighting validity was 

100%, subjects were 90 ms faster on trials with valid color highlighting than they were on 

trials with valid color highlighting at 50% validity. The authors speculated that the differ-

ence in performance occurred because subjects did not always initially attend to the high-

lighted digit in Experiment 1, but did so in Experiment 2 when they saw that highlighting 

was more predictive of the items’ status as target or distractor. Apparently participants 

had been making estimates of the relative costs of attending to the highlighting or disre-

garding it. It was not clear from Fisher and Tan’s results what would occur at other levels 

of validity and so an experiment replicated and extended their results.

Given a paradigm like Fisher and Tan’s digit search task, people operate in an envi-

ronment with probabilistic cues. Shanks, Tunney and McCarthy (2002) described prob-

ability matching as a choice anomaly that is heavily context-dependent. What they meant 

is that probability matching is a case where people deviate from optimal models of choice 

in the decisions that they make, and these deviations depend upon the probability struc-

tures in their environment. People tend to match the probabilities of responding one way 

or another to the probabilities of cues in their environment. Though people are strongly 
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predisposed toward probability matching behavior, given enough compulsion they can be 

induced to behave optimally. What Shanks, Tunney and McCarthy showed was that both 

outcome feedback and substantial reward are necessary to compel people to behave opti-

mally. Sampling, even at a detriment to payoff outcome, seems to be a strongly-ingrained 

behavior. 

In a task like Fisher and Tan’s digit search task, subjects receive minimal feedback 

and reward. Assuming a correct response, the only feedback and reward they receive for 

attending to the highlighting when it is valid or ignoring it when it is invalid is a faster 

time to complete the trial. Even so, slow trial completion times average approximately 

1,200 ms while fast trial completion times average approximately 500 ms. The 700 ms 

that can be saved if the subject finds the target on his or her first shift of visual attention 

may not seem like much incentive, if it is even noticed by the subject at all. If the faster 

trial completion time is not noticed by the subject, then there is no feedback for response 

time at all because there is no overt feedback on trials in which the subject issues a cor-

rect response.

There are several questions concerning the helpfulness of highlighting that could be 

explored. How sensitive are people to highlighting validity? To what extent can people 

adapt to changing validity levels? What search strategies do people employ, and how do 

the answers to the previous two questions come to bear on the development and adoption 

of those strategies? Finally, it would be informative to have a model of visual search with 

highlighted displays that can make predictions about human performance. The research 

proposed in this thesis seeks to answer these questions.
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EXPERIMENT 1A

Fisher and Tan’s (1989) study only implemented two levels of highlighting validity, 

50% and 100%. It was useful to see that, overall, 50% validity offered no improvement in 

visual search performance over no highlighting. But it would be more useful to derive a 

predictive function of validity’s effect. We therefore wanted to test validity’s effect at 

more levels of validity such that we might derive such a predictive tool. Experiment 1A is 

essentially a replication of Fisher and Tan’s paradigm, except that only color highlighting 

was examined and it was examined at additional levels of validity. The effects of position 

will not be a major focus since Fisher and Tan found, unsurprisingly, that subjects were 

fastest for targets in the middle and roughly equally slow on both ends. Bear in mind that 

subjects began each trial with a center fixation.

Method

Participants

One hundred Rice University undergraduates (62% female) participated to fulfill ex-

periment participation requirements for their psychology classes. The participants had a 

mean age of 19.2 years (1.3). There were 20 subjects per condition.

Design

Experiment 1A used a mixed design, with the same within-subject variable, trial type 

(standard, valid highlighting, invalid highlighting) as in Fisher and Tan’s study. Addition-

ally, subjects were assigned to one of five validity proportion conditions: 50%, 67.5%, 

75%, 82.5%, or 100% highlighting validity.
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Procedure

The subjects’ task was to, as quickly as possible without making any mistakes, find 

the number in the display that was less than five and immediately press the corresponding 

key on the number row at the top of the keyboard. At the start of the trial, subjects viewed 

a crosshair for 500 ms at the intended fixation point, in the center of the computer screen. 

They subsequently viewed a horizontal array of five different numerals. The numerals 

were printed in 14-point Times New Roman font on a 17-inch CRT computer monitor at a 

resolution of 1024 by 768 pixels. One numeral from the potential target set, {1 2 3 4} was 

chosen at random, while four distractors from the distractor set {5 6 7 8 9} were also 

chosen at random. The target and distractors were sorted randomly. The array would dis-

appear upon the subject’s key press, and one second later the next trial would begin. In 

the event of an incorrect response, the computer beeped and paused the experiment for 

two seconds. This time penalty discouraged simple guessing.

Results and Discussion

Experiment 1B was an extension of 1A, so results and discussion for both experi-

ments will be presented together.

EXPERIMENT 1B

Preliminary results from Experiment 1A made it desirable to test additional levels of 

validity such that the entire range of possibilities of 0% to 100% might be addressed by a 

model. Therefore, Experiment 1B replicated 1A except that it used validity levels of 0%, 

12.5%, 25%, and 37.5%.
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Method

Participants

Eighty Rice University undergraduates (51% of whom were female) participated to 

fulfill experiment participation requirements for their psychology classes. The partici-

pants had a mean age of 19.2 years (1.3). There were 20 subjects per condition.

Results and Discussion

Outliers were removed prior to statistical analysis, and this was done both for single 

trials and entire subjects. An outlier trial was defined as a trial in which the response time 

was more than three standard deviations from the subject’s overall mean. Those response 

times were replaced with the subject’s mean response time. Each subject’s mean response 

time per condition was similarly screened against the total mean response time for all 

subjects, per condition. Any subject whose mean response time was more than three stan-

dard deviations from the total mean response time for all subjects in more than one condi-

tion was considered an outlier subject. Four such subjects were found, three from ex-

periment 1A and one from experiment 1B. Their data were removed from further analy-

sis.

Figure 1 summarizes the means for each validity condition by trial type. The mean 

response time for the 100% validity condition (640 ms) was 86 ms faster than the mean 

of mean response times for all other conditions (726 ms). ANOVA with contrast revealed 

that this effect was reliable, F(1, 167) = 12.51, p = 0.001. It is worth mentioning that sub-

jects in the 0% validity condition were not reliably slower than subjects in the other con-

7



ditions, contrast F(1, 167) = 0.07, p = 0.799. Excluding the 0% and 100% validity condi-

tions, omnibus ANOVA yielded no effect of validity condition, F(6, 129) = 1.24, p = 

0.292. 

Subjects responded to trials with valid highlighting on average 51 ms faster than trials 

with no highlighting, for which they were 75 ms faster than trials with invalid highlight-

ing (linear F(1, 129) = 418.32, p < 0.001). Furthermore, there was an interaction of trial 

type and validity condition such that as validity increased, subjects became faster on valid 

trials and slower on invalid trials, F(12, 258) = 16.22, p < 0.001 (see Figure 1). But there 

was no main effect of validity condition on response times for the standard trial type, F(6, 

129) = 1.14, p = 0.341. One framework for understanding this validity by trial type inter-

action is the notion of sensitivity, as reflected in response times, to the valid and invalid 

trial types in the context of the validity proportion. Since subjects in the 100% validity 

condition received no invalid trials, and vice versa for the 0% validity condition, further 

analysis will exclude these two conditions.
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Figure 1. Mean response time as a function of validity condition.

Subjects were differentially sensitive to highlighting validity, depending upon which 

validity condition they were in. Sensitivity was defined as the response time for invalid 

trials minus the response time for valid trials. Note in Figure 1 how the lines for valid and 

invalid trials diverge going from the 0% validity condition to the 100% validity condi-

tion. Furthermore, participants sensitized within the first block of 64 trials. Figure 2 plots 

the effect of block and validity condition on sensitivity. Within block 1, subjects in the 

87.5% validity condition were 201 ms more sensitive to trial validity than were subjects 

in the 12.5% condition, an over four-fold difference. One-way ANOVA revealed an effect 

  

0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%
0

600

620

640

660

680

700

720

740

760

780

800

820

840

860

880

900

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Highlighting Validity Condition

valid

control

invalid

Trial Type

9



of validity condition on sensitivity, F (6, 129) = 7.91, p < 0.001. Furthermore, linear con-

trast indicated an increasing effect of validity condition such that subjects were more sen-

sitive to trial type the more often they encountered validly highlighted trials, F(1, 129) = 

45.362, p < 0.001. Furthermore, this trend held for all trial blocks, linear F (1, 129) = 

54.06, p < 0.001, though sensitivity did decline overall from block one to block six, linear 

F (1, 129) = 12.90, p < 0.001. 

Figure 2. Sensitivity as a function of block and validity condition. 
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Subjects became faster overall with time. The mean response time for block 6 (692 

ms) was 65 ms faster than the mean response time for block 1 (757 ms). ANOVA with 

contrast yielded a linear effect of block, F (1, 129) = 107.64, p < 0.001. But the block by 

validity condition interaction was not reliable, F(30, 645) = 1.46, p = 0.056. Thus there is 

insufficient evidence to support the notion that subjects improved their performance at 

different rates in different validity conditions. 

Collapsing across validity conditions, response times for the valid trial type showed 

very little practice effect (Figure 3). The control trial type showed some practice effect, 

while the invalid trial type showed the most substantial practice effect of all three trial 

types. Note that the slope of the function of block for invalid trials drops more steeply 

than the slope for valid trials in Figure 3. For trials with valid highlighting, the mean re-

sponse time dropped by 47 ms from block 1 (698 ms) to block 6 (651 ms). Mean re-

sponse times for standard trials fell by 63 ms from block 1 (758 ms) to block 6 (695 ms). 

And for trials with invalid highlighting, that drop was 94 ms from block 1 (856 ms) to 

block 6 (762 ms), linear by linear interaction effect F(1, 129) = 19.70, p < 0.001. This 

linear by linear interaction effect of block with trial type demonstrates that the change in 

sensitivity over time referred to in Figure 3 is driven mostly by a drop in response time 

for invalid trials. 
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Figure 3. Block by trial type interaction.

It is interesting that the 100% validity condition was so much faster than the 87.5% 

validity condition. This may speak to the sensitivity issue in that if subjects were sensi-

tive to the highlighting always being valid in 100% validity condition, then they probably 
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preattentive processing of color do all the work. Similarly, if performance for the valid 

trial types was subject to a floor effect because subjects initially relied upon preattentive 

visual processing for their search for the target, then there would be little room for a prac-

tice effect. A floor effect for valid trial types would explain why the practice effect was 

bigger in the invalid and standard conditions. 

Analysis of response time for invalid trials as a function of target distance from the 

highlighted item shows that subjects took longer to respond as the distance between tar-

get and highlighted item increased (see Appendix A). This indicates that subjects likely 

processed the display serially, attending one item at a time.

The analysis of subjects’ sensitivity to highlighting indicates that subjects learned 

fairly rapidly whether or not they could take advantage of highlighting in their visual 

search. The more valid the highlighting was, the more subjects used it and the faster their 

response times for valid trials became–and this was true even in the first block. However, 

as validity increased, so did the cost of using highlighting on the occasions that it was 

invalid. The results just presented indicate that people rapidly sensed different levels of 

highlighting validity, but what if that level changes? Therefore experiment 2 will be de-

signed to assess how sensitive people may be to changes in highlighting validity.

EXPERIMENT 2

Method

With the following exceptions, Experiment 2 was identical to Experiments 1A and 

1B. The main change in Experiment 2 was its focus on examining the adaptation to 
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changing levels of highlighting validity. The validity levels therefore change during the 

course of the experiment, rather than being static as in Experiments 1A and 1B. 

Participants

One hundred nine Rice University undergraduates participated to fulfill experiment 

participation requirements for their psychology classes.

Design

Experiment 2 incorporated a mixed design utilizing two within-subjects variables, 

block and trial type (standard, valid, and invalid), and three between-subjects variables: 

magnitude of validity change, direction of validity change, and change onset timing. 

Magnitude of validity change refers to by how many percentage points the highlighting 

validity proportion changed, either 34% or 68%. Direction of validity change refers to 

whether the highlighting became more valid or less valid. Finally, the experiment was 

divided into six blocks, affording short rest periods for the subjects between each block. 

The change in validity occurred with the onset of blocks three or five. Thus the total 

number of between-subjects conditions was eight. 

Procedure

Depending upon which condition a subject was assigned to, the initial validity they 

encountered was 16%, 34%, 68%, or 84%. Blocks consisted of 60 trials, and with the on-

set of the third or fifth block the validity level changed. Subjects assigned to the 16% ini-

tial validity condition then received 84% validity, and vice versa. Similarly, subjects as-
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signed to the 34% initial validity condition then received 68% validity, and vice versa. 

The experiment required a little less than 30 minutes for subjects to complete. 

Subjects were not told in the instructions that the highlighting validity rate would 

change during the course of the experiment. It was thought this would be more ecologi-

cally valid than telling them that the validity would change. Given a real-world task of 

searching through some visual display, such as a web page, the user is not informed a pri-

ori about how useful visual cues will be. Upon completion of the experiment, subjects 

were asked explicitly whether or not they noticed any change in highlighting validity and 

if so, to characterize it.

Since subjects’ sensitivity to changes in validity was assessed by changes in response 

times, we attempted to avoid confounding with practice effects. Therefore, subjects had a 

full block of 60 practice trials before beginning the actual experiment. The important task 

components to practice were searching the field to find the target and pressing the appro-

priate button in response. Allowing subjects to acclimatize to whatever level of highlight-

ing validity they are assigned to before response times are actually recorded might prove 

detrimental to the attempt to assess their sensitivity to the highlighting validity. There-

fore, practice trials were all of the standard type.

Results and Discussion

As in Experiments 1A and 1B, outliers were removed prior to statistical analysis, and 

this was done both for single trials and entire subjects. The same procedures were fol-

lowed for data from Experiment 2 as from Experiments 1A and 1B. Two such subjects 

were found, and their data were removed from further analysis. Figure 4 depicts the mean 
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sensitivity for each of the four conditions with large validity proportion changes while 

Figure 5 depicts those means for the four conditions with small validity proportion 

changes.

Figure 4. Mean sensitivities for large change conditions.
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Figure 5. Mean sensitivities for small change conditions.

The slopes of the change in sensitivity for the block preceding change onset, the 

block of the change onset, and the block after the change onset were examined. These 

three blocks represent prior sensitivity, sensitivity under adjustment, and posterior sensi-

tivity, respectively, and were therefore of most interest for analyzing changing sensitivity 

in subjects as they adjusted to new highlighting validity proportions. Breaking the ex-

periment factors down into size of change, direction of change, and onset of change, only 

direction had any significant effect on slope, ANOVA F(1,98) = 56.125, p < 0.001. Figure 

6 depicts slopes of change in sensitivity for each level of each factor from Experiment 2. 
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Figure 6. Box plots of slope of sensitivity change for Experiment 2 factor levels.

There was a reliable interaction of size with direction, F(1,98) = 13.617, p < 0.001. 

All other F’s < 2, p’s ≤ 0.170. The direction by size interaction coupled with the main ef-

fect of direction means that change direction matters, but it matters more when the 

change is large than small. Figure 7 plots the direction by size interaction for slope of 

sensitivity change. 
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Figure 7. Interaction of change direction and change size for slope of sensitivity 

change. Error bars indicate standard error of the means.

An interesting question is whether subjects in the decreasing validity conditions 

changed their sensitivity faster in response to the changing validity than did subjects in 

the increasing validity conditions. Presumably subjects would notice a drop in highlight-
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ing validity faster than they would notice an increase in validity because of their greater 

attention paid to a higher prior level of validity, as suggested by the results of Experiment 

1. Table 1 contains means and standard deviations for absolute slope of sensitivity change 

for the two groups of subjects. Since the standard deviations for the two groups appeared 

to be fairly dissimilar, an independent samples t test was performed on the absolute de-

viations of absolute slope, t(104) = 1.631, p = 0.106. Therefore there is no reason to be-

lieve the variances of the two groups are different. Equal variances being assumed, t test 

of the absolute slope for the two groups failed to yield a reliable difference in degree of 

sensitivity response to the changing validity in the two groups, t(104) = 1.918, p = 0.58. 

The observed effect size in this analysis was medium-small, Cohen’s d = 0.377, and the 

power to detect an effect of that size was 0.48. The current evidence is therefore incon-

clusive as to whether the absolute rate of change in sensitivity was different depending 

upon whether subjects experienced increasing or decreasing validity. 

Table 1. Means and standard deviations for absolute slope of increasing and decreas-

ing validity groups.

Direction Mean Standard Deviation

Decrease 82.596 78.734

Increase 56.785 58.704

It is perhaps somewhat surprising that no evidence for an effect of onset timing was 

found, that it does not matter how much prior experience with a certain proportion of 

highlighting validity a subject has. What is less intuitive is the lack of a main effect of 

size, and that size only matters in combination with direction. This finding implies that 
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people adjust equally quickly to changes in validity rates no matter the size of the change 

in validity rate. This result could be a consequence of the small change condition being 

confounded with relatively moderate levels of highlighting validity, and likewise for large 

validity changes. Future experimentation might seek to determine whether a lack of main 

effect for  size holds when prior and posterior validity levels are disjoined.

THE ALGEBRAIC MODEL OF OPTIMAL VISUAL SEARCH IN A HIGHLIGHTED 

DISPLAY

Fisher and colleagues (1989) constructed an algebraic model of visual search in an 

attempt to determine average search time for a target in displays with or without high-

lighted options. The model computes expected search times given total set size, high-

lighted subset size, probability of the target being in the highlighted or unhighlighted sub-

sets, and probability that the subject searches first in the highlighted or unhighlighted 

subset (Equation 2). The authors concluded that only a model that captures validity prob-

ability can account for observed variance of RT as a function of highlighting validity 

probability. When the display consists of a set of discrete options, as in the Fisher and Tan 

(1989) paradigm, then the average display search time is a probability mixture of the time 

to find the target when the highlighted options are searched first and the time to find the 

target when the unhighlighted options are searched first. Their model assumes users ex-

haustively search through one subset before searching the other.
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Equation 2 states that the expected time to find the target, EH[T], given that the sub-

ject searches first the highlighted set, is the sum of four quantities. The first quantity is 

the product of the conditional expected search time given that the target is present and 

highlighted times the probability that the target is present and highlighted. Note that in 

both Experiment 1 and Experiment 2 this last term is equal to the probability that the tar-

get is highlighted, since the probability that the target is present in any trial is 1. The sec-

ond quantity is the product of the conditional expected search time given that the target is 

present but not highlighted times the probability that the target is present but not high-

lighted. The third quantity is the product of the conditional expected search time given 

that the target is absent times the probability that the target is absent. The fourth quantity 

is the expected response time, in other words, the time required for the subject to decide 

to press a certain button and then to execute that physical movement. The expected re-

sponse time when the unhighlighted options are searched first is similarly computed, as 

shown in equation 3.

EH [T ] = e [(h +1) / 2] P(Oi )
i=1

h

∑












+ [(n + h +1) / 2] P(Oi )
i=h+1

n

∑










+ nP(On+1)



+ r

(2)
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Assuming the display consists of a set of discrete options, as it does in both experi-

ments, then the average display search time can be derived. It is the probability of first 

searching the highlighted subset times the expected time to find the target if it is in the 

highlighted subset plus the probability that the target is in the unhighlighted subset times 

the expected time to find the target if it is in the unhighlighted subset (Equation 4).

Fisher et al. Assume that pH (probability that subjects search first through the high-

lighted subset) should increase as the average time it takes to locate the target by attend-

ing first to the unhighlighted options grows proportionately larger than the average time it 

takes to locate the target by attending first to the highlighted options (i.e., as the ratio 

EH '[T ] / EH [T ]  increases). Equation 5 is the function they offer that satisfies that con-

straint.  

The present instantiation of the Fisher et al. model assumes 50 ms to decide to attend 

highlighting at the beginning of a trial, 85 ms to shift visual attention, 100 ms to decide to 

attend a new location, and 150 ms to issue a response. These latencies are based on ACT-

EH '[T ] = e [(2n − h + 1) / 2] P(Oi )
i=1

h

∑












+ [(n − h +1) / 2] P(Oi )
i=h+1

n

∑










+ nP(On+1)



+ r

(3)

E[T ] = pHEH [T ]+ (1− pH )EH '[T ] (4)

pH = 1− EXP{−2.0(EH '[T ] / EH [T ])} (5)

23



R’s (Anderson et al., 2004) predictions of how long these actions should take. Figure 8 

plots the predicted mean RTs of Fisher et al.’s optimal model of visual search in the 5 x 1 

array paradigm for trials with valid and invalid highlighting. Also shown is data collected 

from human subjects. Note that the optimal model predicts a highlighting sensitivity in 

excess of 300 ms for even the low validity percentage conditions, whereas the humans 

showed sensitivity in these conditions more on the order of 40 or 50 ms. Note also how 

the predicted RTs for valid trials are approximately 350 ms less than those obtained. Pre-

dicted RTs for invalid trials also were reliably less than those obtained from humans, 

t(14) = 2.409, p = 0.030, and the human RTs increased at a faster rate as a function of in-

creasing validity level, ANOVA with linear contrast on highlighting validity F(1,14) = 

5.803, p = 0.030.
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Figure 8. Predicted RTs of Fisher et al.’s optimal model and RTs from Experiment 1.

The optimal model computes PH, the probability that the subject first examines the 

highlighted subset. Table 2 lists PH for each level of highlighting validity. When both the 

total number of items and number of highlighted items is low, as it is in this experiment, 

PH will always be high because the random chance of finding the target in any given posi-

tion is high (20%). The high PH is what drives the model to predict such fast times for 

valid trials, and it may be that subjects are not as fast in valid trials because they are not 

so likely to search the highlighted item first. 

Table 2. Values for PH given highlighting validity.

Validity PH
0.0% 0.785

12.5% 0.837

25.0% 0.882

37.5% 0.919

50.0% 0.949

62.5% 0.971

75.0% 0.986

87.5% 0.994

100.0% 0.998

Finally, Fisher et al.’s algebraic model does not take into consideration the possibility 

that subjects may attend to some subset of the unhighlighted options, then attend to the 

highlighted option, then if necessary, finish searching the unhighlighted options. As shall 

be shown with the ACT-R models, the ability to attend to the highlighting at any time 

may be important for replicating the human data.
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What contributes to the adaptability of human visual search behavior in an environ-

ment where cues have some probability of being helpful or hindering? Given a fairly 

simple paradigm like the digit search in a 5 x 1 array used by Fisher and Tan, there are a 

couple of decisions that could be made by the user at a variety of different times through-

out the task. Users can potentially elect to attend or avoid the highlighting each time they 

shift their visual attention, though they might not actually make that decision that often. 

Then there are issues of self-evaluation of performance: do users evaluate their own per-

formance at the level of whole trials or some smaller level, such as individual shifts of 

attention? Fisher et al.’s algebraic model has no answer to offer for these questions.

An ACT-R model can shed some light on the above questions, since it must be explic-

itly programmed to attend or avoid highlighting either with every shift of attention or 

only the first one. It could also evaluate its own performance at either a macro level (i.e., 

a full trial) or micro level (i.e., each shift of attention). Two ACT-R models were con-

structed to compare to Fisher et al.’s algebraic model and to make inferences about peo-

ple’s search behavior in reference to the micro versus macro issues discussed above.

THE ACT-R MODEL

A useful framework for considering the information search task outlined above is the 

embodied cognition-task-artifact (ETA) triad (Byrne, 2001). The central notion is that the 

behavior and performance of a user interacting with some device is a function of the 

properties of three things: the cognitive, perceptual and motor capabilities of the user, 

termed embodied cognition, the task the user is engaged in, and the artifact the user is 

employing in order to perform the task. Cognitive modeling forces the analyst to consider 
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all three pieces of the triad at once. For a simulation model to run that provides a descrip-

tion of the capabilities and limitations of the user, it must be given both a task to perform 

and a complete and detailed description of the artifact being used. Byrne constructed two 

models of visual search using computer menu artifacts. He discovered that the model that 

fit user data better used local, rather than global, search strategies. Furthermore, learning 

played a role in the development of those strategies as the model weeded out ineffective 

strategies.

The ACT-R (Anderson et al., 2004) cognitive architecture was used to construct a de-

tailed model of the data from Experiments 1A, 1B, and 2. ACT-R is a hybrid cognitive 

architecture using a combination of a symbolic production system and subsymbolic com-

putation with perceptual and motor modules that allow the cognitive system to interact 

with the simulation’s outside world. The symbolic production system uses a set of pro-

duction rules, each of which specify under what circumstances that production may be 

executed (known as the left-hand side of the production), and then what the model will do 

when that production fires (right-hand side of the production). The subsymbolic compo-

nent of ACT-R computes thresholds and latencies for certain operations, such as the re-

trieval of information from long-term memory. ACT-R is an ideal tool to explore the ef-

fect of highlighting validity on performance in a visual search task because of its inclu-

sion of perceptual-motor modules that can accurately simulate human response times in a 

wide variety of tasks, as well as its subsymbolic evaluation of the utility of production 

rules.
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ACT-R’s visual system separates vision into two modules, “visual-location” and 

“visual-object”, each with an associated buffer (Anderson et al., 2004). When a produc-

tion makes a request of the visual-location module, the production specifies a series of 

constraints, and the visual-location module returns information representing a location 

meeting those constraints. Constraints are attribute-value pairs that can restrict the search 

based on visual properties of the object (such as “color: red”) or the spatial location of the 

object (such as “vertical: top”). This is akin to preattentive visual processing (Treisman & 

Gelade, 1980) and supports visual pop-out effects. But to identify an object, ACT-R must 

make a request of the visual-object module. A request to the visual-object module entails 

providing information representing a visual location, which will cause the visual-object 

module to shift visual attention to that location, process the object located there, and re-

turn information representing the object. Thus ACT-R can conduct feature-guided visual 

search.

One of ACT-R’s learning mechanisms uses a competitive evaluation of production 

rule utility. In any given cycle of computation, the left-hand side of multiple production 

rules can match the state of the buffers. ACT-R fires the competing production with the 

highest utility. These utilities are learned through experience–each time a production is 

fired, ACT-R “remembers” the time cost of using that production, and whether the pro-

duction helps the model to succeed or fail in meeting its goal. 

Specifically, ACT-R evaluates a production rule’s utility according to Equation 6, 

where Pi is the expected probability that firing production i will lead to successful com-

pletion of the objective. The objective is completed when a later production marked as a 
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success or failure is executed. Ci is the expected cost of achieving the objective, in sec-

onds, and G is the value of the objective, also in seconds (the default value is 20 sec-

onds). ACT-R uses Equation 6 to compute the parameter, P and Equation 7 to compute 

the parameter, C. Successes and Failures are the number of successes and failures experi-

enced when using production i, and Efforts is the accumulated time over all the success-

ful and failed applications of production rule i. Successes, Failures, and Efforts can all be 

set to simulate prior experience.

         (6)

        (7)

       (8)

ACT-R uses the utility of a production to decide which production to fire out of a 

set of competing productions (the conflict set) that match the conditions of the internal 

state of the model and the state of the outside world. The probability that production i 

will be selected on the basis of its utility, U, out of conflict set j is calculated with Equa-

€ 

Ui = PiG −Ci

€ 

P =
Successes

Successes+ Failures

€ 

C =
Efforts

Successes+ Failures
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tion 9, where t controls the noise in the utilities. Summation is over all competing produc-

tions. 

       (9)

On any given trial with highlighting present, the model selected and fired one of two 

productions which caused it to attend to (”attend-red”) or avoid the red item (”avoid-

red”). At the start of each highlighted trial, both productions match the contents of the 

buffers, which include a buffer-stuffed red item. “Attend-red” made the model move vis-

ual attention to the red item. “Avoid-red” made it seek an unattended black item. If the 

currently attended item was a target, the models output a press of the appropriate key. If 

the item was a distractor, a production, “highlighted-distractor”, fired. This production 

was marked as a failure and it made the critical difference for getting the model to dupli-

cate the effect of validity condition on sensitivity. If the red item was still unattended, 

then the model still had the decision to make as to whether to attend to or avoid the high-

lighting (“avoided-red-distractor-find-red” and “avoided-red-distractor-find-black”, re-

spectively). In the case of control trials, the model simply fixated unattended items until it 

found the target. 

€ 

Pi =
eUi /t

eU j /t

j

n

∑
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Production priors were set as in Table 3. The priors for “avoid-red” were set equal to 

the random chance that the target was in either the highlighted or unhighlighted subset, 

20% chance for the highlighted group since one item would be highlighted out of a total 

of five items in the display. Priors for “avoided-red-distractor-find-red” and “avoided-red-

distractor-find-black” were set equal to the random chance that the target would be in ei-

ther highlighted or unhighlighted subset, given that one unhighlighted item was already 

examined and found to be a distractor. The probabilities for successes and failures for 

“attend-red” were originally set following the same rule, thus 20 successes and 80 fail-

ures. But it was found that the model did not attend the highlighted item often enough to 

generate a similar RT pattern to the human data, so they were changed to 50 successes 

and 50 failures. This could imply that people may be inclined to check highlighted sub-

sets at rates greater than chance.

Table 3. Production priors for the ACT-R model.

One consequence of this set of priors is that the model will be slightly biased toward 

examining an unhighlighted item first, but not as biased as if it were simply ignoring 

highlighting altogether and checking each item randomly. ACT-R computes the utility of 

every production i using Equation 6, where Pi is an estimate of the probability that if pro-

Production Successes Failures Initial Utility
attend-red 50 50 9.95
avoid-red 80 20 15.90
avoided-red-
 distractor-find-red

25 75 4.90

avoided-red-
 distractor-find-black

75 25 14.90
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duction i is chosen the current goal will be achieved, G is the value of that current goal, 

and Ci is an estimate of the cost (typically measured in time) to achieve that goal (Ander-

son et al., 2004). Equation 7 computes P and Ci is the simulated time elapsed between 

firing production i and firing another production that is marked as a success. Thus 

“attend-red”’s utility started at .5 * 20 - 0.05 = 9.95 versus 15.90 for “avoid-red.” 

This seems valid as a set of  starting assumptions about the expectations about high-

lighting subjects brought with them to the experiment given a lack of measurement of the 

match between subjects’ information search goals over the course of their lives and the 

highlighted items they have encountered. The priors were scaled to values between 10 

and 100 such that the model would start a run with some biases in the productions it 

chose, but not so biased as to be inflexible to learning new utilities over the course of the 

384 trials.

Figure 9 illustrates the mean response times for human and model data, per trial type, 

per highlighting validity condition. The model provided a good fit to the data, r = 0.982, 

mean deviation = 67 ms. The one flaw in the model is its poor prediction of response 

times for valid trials in low validity conditions. Because it is too slow on such trials, the 

model’s invalid trials fail to show the kind of sensitivity to validity condition that the hu-

man invalid trials do. While we have determined that the model actually does actually 

avoid red items all the way through invalid trials in the low validity conditions, it is not 

apparent why the model generates such slow response times for these trials. We hope that 

detailed examination of proportions of firings of “attend-red”, “avoid-red”, and their sub-

sequent fixation counterparts will yield clues as to what the model is actually doing for 

these trials.
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Figure 9. Human data from Experiments 1A and 1B compared to model data.

Despite the major flaw described above, the model’s sensitivity effect of validity pro-

portion does closely mimic that of the human data (Figure 10), r = .957, p < 0.001. With 

the model for Experiments 1A and 1B displaying such odd behavior, it seems unwise to 

proceed to attempt to model Experiment 2 until the Experiment 1 model can more closely  

simulate the human data for invalid trials. This is especially true given that we hope that 

an unaltered model of the first experiments will provide a good fit to Experiment 2’s data. 

We hope one model will capture all the major effects in both experiments because we 

think that the same basic mechanisms are driving the sensitivity effect of validity propor-
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tion in Experiments 1A and 1B and the rate of change of that sensitivity in response to 

changing validity in Experiment 2: decision-making at the sub-trial level and evaluation 

of success and failure at the sub-trial level. We think these mechanisms are important for 

generating the discussed effects in this paradigm because the most successful model of 

the first experiment does these two things. Models that did not incorporate both of these 

features simply did not generate the sensitivity functions that the described model has.
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Figure 10. Mean sensitivity for model and human data.

The ACT-R model generally showed the same variances as humans related to high-

lighting validity condition and trial type. Appendix B contains histograms plotting num-

ber of trials against 100 ms RT bins for humans and the model by validity condition and 

by trial type. The model’s data appears more discrete in its distributions compared to hu-

man data because it ran with most stochastic features turned off for the sake of reducing 
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time required for computation. The lack of stochasticity in computations is also likely the 

reason for the model’s sometimes lack of positive skew in its RT distributions relative to 

the human data.

GENERAL DISCUSSION

Fisher and Tan (1989) found that color highlighting at 50% validity led to response 

times that were no faster than no highlighting at all. Yet the results from Experiments 1A 

and 1B plainly contradict that: subjects were 74 ms faster on average with 50% valid 

highlighting than with no highlighting. Calculating the expected response time shows 

why. For standard trials, on average subjects are going to have to make 2.5 shifts of atten-

tion to find the target, since there is a total of five items in the display. At approximately 

200 ms per attention shift, that means it will take 500 ms on average to find the target, 

plus another 250 ms on average to press the button. Indeed, the mean response time for 

standard trials in Experiments 1A and 1B was 751 ms. By comparison, highlighting is 

still worthwhile even at 50%, because at that proportion a highlighted trial will only re-

quire an average of two shifts of visual attention. If the highlighting is valid, then only 

one attention shift is necessary. If the highlighting is invalid, then three attention shifts 

are necessary on average. Since there is an equally likely chance of the highlighting being 

valid or invalid, the overall average number of required attention shifts will be two.

People have demonstrated themselves to be sensitive to this kind of optimality, or at 

least they behave that way. The model reveals that how they get there seems to be by the 

use of micro-level decisions and feedback. Furthermore, the model posits an explicitly 

endogenous locus of control for attending to the cue. The model only attends to the red 
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item when it selects and fires the production that causes it to “voluntarily” attend to that 

stimuli. While it is possible that this completely explicit endogenous cuing might have 

something to do with the model’s current difficulties with invalid trials, it is difficult to 

see how that may be. If invalid trials hurt performance because people involuntarily at-

tend to the highlighting, then in the extreme case that cuing is entirely exogenous there 

should be no sensitivity function of highlighting proportion at all because people should 

be attending to the highlighting equally often in all validity proportion conditions. If peo-

ple operate on some kind of mixed endogenous and exogenous cuing mechanism in this 

paradigm, then there should still be some function of sensitivity because people are still 

going to be able to exercise some degree of control over whether or not they attend to the 

highlighting, and it is not clear how that could affect the valid and invalid trials differen-

tially, as they are in the model. To some degree, people are learning the probabilities with 

which highlighting leads them to the target, they are using that knowledge to exercise 

control over where they look, and they are doing this at temporal levels on the order of 

200 ms.
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APPENDIX A: HISTOGRAMS OF HUMAN RESPONSE TIME IN INVALID TRIALS 

AS A FUNCTION OF TARGET DISTANCE FROM HIGHLIGHTED ITEM

All histograms plot number of trials on the y axis and RT bins on the x axis. All dis-

tances are noted in terms of the number of item places in the display (e.g., “distance = 1” 

indicates that the items are adjacent).
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APPENDIX B: HISTOGRAMS OF HUMAN AND ACT-R MODEL DATA

All histograms plot number of trials on the y axis and RT bins on the x axis.
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