
The model that knew too much: The interaction between

strategy and memory as a source of voting error

Xianni Wang1, John K. Lindstedt1, Michael D. Byrne1,2
{xw48, j.k.l, byrne}@rice.edu

1Department of Psychological Sciences, 2Department of Computer Science

6100 Main St., MS-25, Houston, TX 77005 USA

Abstract

This paper presents a family of models of a voting task we
developed in order to investigate how errors arise from the
interaction between strategy and knowledge. We crossed four
task strategies with five different declarative memories and
two visual strategies to yield a total of 40 different ACT-R
models, and then tested the models through Monte Carlo
simulations with 500 runs of each model. The findings
suggest that some strategies work best when knowledge is
incomplete, and that more task knowledge can lead to more
errors in the recall process. These results highlight the
importance of studying human error using a thorough
exploration of the strategy space.

Keywords: ACT-R; error prediction; voting

Introduction

Human error is important for both theoreticians and

practitioners to understand human cognition and

performance. While theoreticians like to collect and classify

errors, practitioners are more interested in their remediation,

prevention, and even elimination. However, research on

how to bridge the gap between the theoretical and practical

areas is still not particularly common. In this paper, we

describe an error prediction method that connects theoretical

and practical work on human errors. This method accounts

for human performance in routine behaviors using

computational modeling and ultimately we hope can be used

to predict human error before a system is implemented.

Error prediction methods are often based on traditional

hierarchical task models (e.g., Annett & Duncan, 1967),

which often assume that the processing system is explicitly

hierarchical in structure and therefore break down complex

tasks into hierarchies and sub-goals. Botvinick and Plaut

(2004) suggested that hierarchical schemas and goals are not

always necessary, at least in routine behavior. Instead, they

presented a recurrent network model that uses recurrent

connections within a network, which map from

environmental inputs to action outputs, to represent an

everyday task. However, Cooper and Shallice (2006)

contrasted this recurrent network model with their more

traditional, hierarchically structured interactive activation

model. They criticized Botvinick and Plaut’s recurrent

network approach, describing a set of problems with the

approach, such as its behavioral inflexibility, and concluded

that hierarchical structures are still necessary and play a

causal role in the control of behavior.

Another approach to studying human error is to create

human performance models using ACT-R (Anderson,

2007). This goes one step beyond models based on a

traditional hierarchical structure by using cognitive

architectures. ACT-R is a computational cognitive

architecture that simulates and integrates human cognition,

attention, and motor behavior. This helps researchers to

understand how people organize knowledge and produce

behavior in different ways. There are several published

ACT-R models that can make the same errors as people

(e.g., Anderson, et al., 1998; Halbrügge, Quade, &

Engelbrecht, 2015; Lebière, Anderson, & Reder, 1994;

Trafton, Altmann, & Ratwani, 2011).

However, it is not easy to predict human error using

ACT-R. First, there are many types of errors, but a human

performance model usually only makes a specific kind of

error. If there is a complex working system that contains

several sub-tasks, it will take time and effort to create

models that cover all possible errors. Second, in general,

computational human performance models are fitted to

and/or make predictions about average human behavior.

However, predicting errors cannot simply be a question of

fitting the mean, because even if the average person does

not make an error, there may still be a substantial number

who do.

Our domain for error modeling is voting. People usually

think that filling out a ballot is a simple task, but, in reality,

unintentional undervotes, overvotes, or votes for the wrong

candidate are very common in almost all elections. An

undervote occurs when the number of votes is less than the

maximum number allowed in a race, and an overvote occurs

when the number of votes is more than the maximum

number allowed. One reason for all these errors lies in the

poor designs of the ballots, which fail to support human

perceptual and cognitive limitations. There is clear evidence

that ballot design problems have affected the outcomes of

multiple elections in the United States (Laskowski et al.,

2004). For example, more than 2,000 votes intended for

Gore were cast for Buchanan in Palm Beach County,

Florida, during the 2000 elections due to the use of the

infamous butterfly ballot (Wand et al., 2001).

A standard usability evaluation prior to deployment

would likely detect poor designs and prevent errors.

However, usability specialists are rarely asked to perform

such tests prior to an election. Instead, election officials,

who have little formal training or the expertise in assessing

ballots, are left to the task. In addition, most elections in the

U.S. are administered at the county level, and there are over

3,000 counties in the U.S. Within each county, there are

often hundreds of different precincts, each with a slightly

different ballot style, meaning that, for each national

election, tens of thousands of ballot designs are deployed.

This makes conducting a traditional usability test for every

single ballot intractable due to the problem scale.

While it is impossible to perform usability testing on

every ballot before every election deployment, some initial

work has been done on predicting errors in voting tasks. In

Greene (2010), an ACT-R model was presented that could

sometimes make the same mistake that voters made in

Sarasota, Florida in 2006. In this case, the first DRE screen

contained one race, but there were two races presented on

the second screen. This layout inconsistency led to 13.9% of

votes being undervotes in the top race on the second screen.

Greene modeled these first two screens to explore two

voting strategies. The first strategy was to read the first

screen from top to bottom before selecting a candidate, and

then recall a useful location from the first screen to use to

direct the visual search on the next screen. With this

strategy, the model used the first screen to set expectations

about where to find relevant landmarks (e.g., titles of races);

it could then miss the critical top race on the second screen

when the model extended those expectations from one

screen to the next. The second strategy was to read both

screens from top to bottom, without any recall. In contrast to

the first strategy, the second strategy did not result in a

critical top race undervote.

Greene’s (2010) model offers a meaningful opportunity

for computational human performance modeling to make a

unique contribution to the voting field. However, this model

does not reflect the full complexity of voting. Different

voters almost certainly approach ballots differently. It is

therefore critical that the models reflect not just one or two

voting strategies, but the entire range of behaviors, so that

specific interactions between voting strategies and ballot

designs can be uncovered.

To capture more of the voting complexity, we developed

a model-based approach that covers a family of voting

strategies using ACT-R. For each model, the memory

strategy, ballot knowledge, and visual search strategy were

considered independently. Memory strategy represents how

voters access their memories when they cast a vote; ballot

knowledge defines voters’ level of knowledge of the races

and candidates; and visual search strategy indicates voters’

visual directions when conducting a visual search. In total,

our system consists of 40 voting models that crossed four

memory strategies with five kinds of ballot knowledge and

two visual strategies.

When it comes to visual search, humans have a

remarkable ability to organize their perceptual inputs. The

human visual system tends to group individual items in a

visual image into larger structures under certain

circumstances. This allows for the more efficient use of

attention but sometimes leads to critical errors in executing

a task. For example, the ballot used in Wisconsin in 2002

led to many unintentional votes. On this ballot, the race for

governor was split across two columns, which led many

voters to consider the two visual groups as two races. Many

voters voted twice, once in each column. To handle

situations like this, our system makes use of a visual

grouping algorithm that enables more realistic visual

scanning behaviors (Lindstedt & Byrne, 2018).

In short, our model-based system assessed a ballot layout

with a family of voting models. Each voting model was

tested multiple times, and the average across those runs was

calculated. After running every ballot through each model

repeatedly, all combinations of strategies and knowledge

that generated high error rates were identified.

The Voting Task

Our system was implemented for an emulated voting task

using the VoteBox task environment. Multiple experiments

have been published in which human subjects voted using

VoteBox (e.g., Everett, 2007; Everett, et al., 2008). This

voting task contains 21 races that share a consistent layout

(see Figure 1). The layout was designed to be easy to

understand, with a relatively simple display that comprised

the voting instructions, title of the race, candidates’ names

and party affiliations, a “previous page” button, and a “next

page” button, all clearly arranged and presented across the

screen.

Figure 1: Mock ballot of a presidential race.

All versions of the model contain two phases. The first is

a studying phase in which the model studies the display

thoroughly to retain group information produced by the

visual grouping algorithm. The second phase is a voting

phase; after obtaining and storing group information during

the first phase, the model now has expectations about where

to look. It directs its gaze to the appropriate place and then

makes a vote.

Modeling Strategies

A total of 40 voting models were developed. Each model

includes a memory strategy, ballot knowledge, and a visual

search strategy. To produce a comprehensive error

prediction, multiple plausible versions were considered for

each component. The details of each component are

described in the sections below. We defined four memory

strategies, five kinds of ballot knowledge, and two visual

search strategies.

Memory Strategies

Voters have to remember their choices, and they access their

memories in different ways. There are two primary memory

strategies for simple form-filling tasks like voting: retrieval

and recognition. Some voters can simply recall the names of

those for whom they intend to vote, at least in some

races. For example, many voters, when prompted, can

retrieve from memory the candidate for whom they intend to

vote in presidential elections. Other voters may instead scan

the list of names first to try to recognize their preferred

candidates. Some voters vote almost exclusively according

to party affiliation but then have to remember which races,

if any, have exceptions. Some voters may rely on party

affiliation if they can neither recall for whom they intended

to vote nor recognize any of the candidates’ names on the

list. While some voters may also write out a list and bring it

into the voting booth, it is not clear how common this is,

and it is, in fact, illegal in some jurisdictions. So, we did not

consider this strategy.

Our models capture four memory strategies one could

reasonably expect a voter to employ—a strictly retrieval-

based strategy, a strictly recognition-based strategy, a

retrieval-then-recognition contingency strategy, and a

simple party-only look-up strategy (in case of exceptions to

their default party). The first strategy represents the scenario

in which the model first tries to retrieve the candidate’s

name from memory. If the model fails to recall the name,

then it relies simply on a party affiliation. The second

strategy considers the situations in which the model first

tries to retrieve their choice, but, if the retrieval fails, it then

scans the list of names and votes for the one it recognize. If

recognition also fails, it votes by party affiliation. For the

third strategy, the model does not even attempt to retrieve;

rather, it scans the list of names to see if it can recognize

any of them. If recognition fails, it votes by party. For the

last strategy, the model simply votes based on party

affiliation. It first retrieves the specific party affiliation for

specific races, but, if the retrieval fails, default party

affiliation becomes the only criterion. The last step of these

four memory strategies—voting by default party

affiliation—is used only when all the previous steps fail.

The default party affiliation could be either the Democratic,

Republican, or Libertarian Party.

Other memory strategies are certainly possible, but it is

unclear how a voter could use the contents of their memory

to vote in a meaningfully different manner without

substantial overlap with one of the strategies listed above.

Ballot Knowledge

Voters have different levels of knowledge about the races

and candidates. Some voters might have encoded all of the

candidates’ names, some may only know the names of

candidates they intend to vote for, and some may only have

parts of the intended candidates’ names in their memories.

In addition, ballot knowledge is not always easy to recall.

Some voters may only remember their choices for the first

few races because it is much more likely that voters will

have more frequent exposure to top-of-the-ballot candidates.

ACT-R represents situations like this using base-level

activation, which reflects the recency and frequency of a

specific memory.

Table 1: Ballot Knowledge

Ballot

Knowledge

Candidates’ Names Activations for Intended

Candidates

FULL-

MEMORY

All candidates Races 1 to 7: 0.7

Races 8 to 14: 0.6

Races 15 to 21: 0.5

ALL-

ROLLOFF

Intended

candidates only

Races 1 to 7: 0.7

Races 8 to 14: 0.6

Races 15 to 21: 0.5

ALL-

PERFECT

Intended

candidates only

All races: 0.8

MOST-

ROLLOFF

70% of intended

candidates

Races 1 to 3: 0.8

Races 4 to 7: 0.7

Races 8 to 11: 0.6

Races 12 to 15: 0.5

Race 16 to 21: Abstained

MOST-

PERFECT

70% of intended

candidates

Race 1 to 15: 0.8

Race 16 to 21: Abstained

Five ballot knowledge types were therefore created (see

Table 1). First, we defined three levels of how many

candidates’ names were stored. The models could remember

all candidates’ names, only the intended candidates’ names,

or only the first 70% of the intended candidates’ names.

Then, we assigned two types of activations for intended

candidates: roll-off activations and constant high-level

activations. Models with roll-off activations are most

familiar with the candidates for the first several races; then,

as they progress down the ballot, their familiarity with

candidates decreases. In the second condition—constant

high-level activations—the models are highly familiar with

all races to the same degree. Note that the various contents

and activation levels of memory were not chosen as an

exhaustive search of all possible knowledge held by voters,

but rather as an illustrative sample of common voter

scenarios—some voters have certainly done their homework

extensively, while others have likely only decided

“important” races.

Visual Search Strategies

While reading in a serial order is the most common search

strategy, eye-tracking studies have demonstrated that it is

not universal (Aaltonen, Hyrskykari, & Räihä, 1998;

Fleetwood & Byrne, 2006). People scan displays in different

ways: some readers read in a serial, item-by-item pattern,

from one corner to its diagonal opposite; some people scan

globally and read all the bold, large, or colored headers first;

and some simply prefer to scan randomly.

Two visual search strategies were used when looking for

candidates: a serial search and a random search. The serial

search strategy is a serial item-by-item search with a left-to-

right, top-to-bottom pattern. With the random search

strategy, the models conduct a random search.

Model Evaluation

Method

The first issue to address is the number of Monte Carlo

replications. We used the approach outlined in Byrne (2013)

based on confidence intervals. We expected the overall error

rate generated by the model to be around 5% and wanted the

95% confidence intervals for the model predictions to be no

wider than 2% in either direction. The table in Byrne (2013)

shows this requires 457 model runs; we ran 500 per model

to be slightly more conservative.

Error Predictions

For each model run, the ballot, as completed by the model,

was compared with the “intent” initialized at the beginning

of the run, and any discrepancies were noted as errors.

Errors occurred across the entire voting process. The model

might have retrieved an unintended name, recognized an

unintended name, or failed to retrieve and then recognized

an unintended name. For the model that simply made votes

based on party affiliation, it may have retrieved an

unintended party. The model may even have failed to

retrieve and/or recognize an intended name, and then have

voted by default party affiliation. We used Democratic as

the default party affiliation for this model evaluation;

however, intended candidates’ party affiliations did not

always match the default party affiliation. The model

occasionally also mis-clicked on the name above or below

the intended name.

Overall, our models generated an average 5% error rate

across all voting models. This is somewhat higher than

Figure 2: Interaction between memory strategy and ballot knowledge in voting error rates. The bars show voting errors.

The five ballot knowledge types are written along the top; each shows the error rates for the four memory strategies. The

three colors of the bars indicate the three kinds of processes the model used when it made an error. Red, green, and blue

represent the party affiliation, recognition, and retrieval, respectively.

observed human error rates of around 1.5% (e.g., Everett, et

al. 2008) and unfortunately it is impossible to compare our

models directly to human data since we cannot know the

strategies used by people in such studies. Instead, we are

interested in how the model strategies interact to produce

errors.

Differences in error rates with visual strategies were not

found, which means that using either a serial or a random

scanning pattern did not affect the voting results. The main

story here is therefore about memory strategy and ballot

knowledge. We observed differences in voting errors based

on the interaction between voting strategy and ballot

knowledge.

Figure 2 presents five groups of bars that represent the

error rates of the five kinds of ballot knowledge. For each

type of ballot knowledge, the percentages of the errors for

the four memory strategies are displayed. For the FULL-

MEMORY condition, the model generated 9% more errors

than the other four ballot knowledge types. The model also

generated more errors with roll-off activations for intended

candidates. For the MOST-ROLLOFF and ALL-ROLLOFF

conditions, the voting model was 2% more likely to make

errors than with the MOST-PERFECT and ALL-PERFECT

conditions. Additionally, for these four levels of ballot

knowledge other than FULL-MEMORY, there were clearly

fewer errors with the three-step “retrieve-recognize-party”

memory strategy.

We then investigated the error attributions for each vote

to determine which process the model was using when it

made an error. In Figure 2, each bar is partitioned into three

colors, which represent the three kinds of process the model

was using when it made an error: retrieval, recognition, or

party affiliation. For the FULL-MEMORY condition, most

of the errors occurred in the recognition and/or retrieval

processes. Within FULL-MEMORY, 7% more voting errors

were generated with the “recognize-party” memory strategy.

However, for the other four kinds of ballot knowledge,

differences in error attributions with memory strategies were

not apparent; most of the errors were generated in the last

steps—voting by party affiliation.

Discussion

The error predictions indicate that extra ballot knowledge

actually led to more errors, especially with the involvement

of recognition. Common sense would suggest that a broader

knowledge base should help to mitigate mistakes, but this is

not always the case. Another example that also suggests that

a strategy works best when knowledge is incomplete is the

recognition heuristic. The recognition heuristic describes a

situation where, if one of two objects is recognized and the

other is not, the recognized object is more likely to be

selected (Goldstein & Gigerenzer, 2002). This strategy

requires ignorance to make a choice—if people know

everything or nothing about the options, it simply does not

work. For example, for the question “which city has a larger

population?” most people choose Dublin over Nenagh since

they can recognize Dublin only, but it is harder for people to

make a selection if the choices become San Diego and San

Antonio, as they are more likely to recognize both of these

cities. Similarly, in the voting task in our study, the models

knew everything in the FULL-MEMORY condition,

including both the intended and unintended candidates’

names. Thus, compared to the other four ballot knowledge

types, the memory strategies did not work well with FULL-

MEMORY, and more errors occurred in the recognition

processes.

Because of the more frequent recognition errors, one

thing we can expect with the FULL-MEMORY condition is

a greater impact of candidate name order. Voters who

cannot recall their intended candidate’s name must scan the

list of names and see if they can recognize any, and their

choices can be biased by the order in which candidates’

names appear on the ballot (Miller & Krosnick, 1998). In

our study, the model with “recognize-party” memory

strategy checks each candidate, sees if it recognizes, and if

so, votes for it. Since some voters use top-to-bottom visual

search, an advantage for the top candidate can be predicted.

Another finding has to do with the interaction between

task knowledge and recall performance. Schooler and

Anderson (1997) suggested an association between the

number of choices and recall performance, positing that the

more choices we have, the more likely we are to make a

recall error at each name. We observed the same

relationship in our models. The FULL-MEMORY condition

contains both intended names and unintended names, and

the models could either retrieve an intended name or an

unintended name for each race in that condition. It was

therefore more likely to make errors in the retrieval process

since incorrect answers are available. However, with the

other four ballot knowledge types, there are only intended

names available in memory. Wrong names were therefore

less likely to be retrieved with these four levels of

knowledge.

We can also conclude from the error predictions that the

three-step “retrieve-recognize-party” memory strategy had a

better performance than the two-step memory strategies. As

can be seen in Figure 2, a large portion of the errors came

from the last steps, voting by party affiliation, across five

levels of knowledge. Comparing to the two-step strategies,

the additional one step prevented errors that could be made

in the last step, and so the least amount of errors was

generated with the three-step memory strategy.

Note that the errors made here are not the result of poor

ballot design. However, we believe that further interactions,

those between strategy, knowledge, and ballot design, will

show how the visual layout of the ballot can influence error

rates. Poor layouts may not induce all voters into error, but

differentially affect those who use particular strategies.

Furthermore, we believe that these kinds of errors are not

limited only to filling out ballots, but likely occur in other

tasks that are essentially form fill-in, such as interacting

with electronic health records.

Our model-based system represents the first use of ACT-

R as an error prediction tool to diagnose if there are

particular combinations of strategies that lead to error. The

idea that one can understand the error space by modeling

only one strategy or predicting mean behavior is likely to

miss critical combinations of factors that produce errors.

Our results demonstrate that subtle interactions between

strategy and knowledge can have substantial effects on error

rates. Thus, it is critical to consider multiple combinations

of both when attempting to model errors, even in a task that

appear as simple as voting.

Acknowledgments

This research was supported by grant #CNS-1550936 from

the National Science Foundation. The views and

conclusions contained herein are those of the authors and

should not be interpreted as representing the official policies

or endorsements, either expressed or implied, of NSF, the

U.S. Government, or any other organization.

References

Aaltonen, A., Hyrskykari, A., & Räihä, K. J. (1998). 101

spots, or how do users read menus? In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (pp. 132-139). ACM Press/Addison-Wesley

Publishing Co.

Anderson, J.R. (2007). How can the human mind occur in

the physical universe? New York: Oxford University

Press.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.

(1998). An integrated theory of list memory. Journal of

Memory and Language, 38(4), 341-380.

Annett, J., & Duncan, K.D., (1967). Task analysis and

training design. Journal of Occupational Psychology 41,

211–221.

Botvinick, M., & Plaut, D. C. (2004). Doing without schema

hierarchies: a recurrent connectionist approach to normal

and impaired routine sequential action. Psychological

Review, 111(2), 395-429.

Byrne, M. D. (2013). How many times should a stochastic

model be run? An approach based on confidence

intervals. In Proceedings of the 12th International

Conference on Cognitive Modeling (pp. 445-450).

Ottawa: Carleton University.

Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas

and goals in the control of sequential behavior.

Psychological Review, 113(4), 887-916.

Everett, S. P. (2007). The usability of electronic voting

machines and how votes can be changed without

detection (Doctoral dissertation). Rice University,

Houston, TX.

Everett, S. P., Greene, K. K., Byrne, M. D., Wallach, D. S.,

Derr, K., Sandler, D., & Torous, T. (2008). Electronic

voting machines versus traditional methods: Improved

preference, similar performance. Human Factors in

Computing Systems: Proceedings of CHI 2008 (pp. 883-

892). New York: ACM.

Fleetwood, M. D., & Byrne, M. D. (2006). Modeling the

visual search of displays: A revised ACT-R model of icon

search based on eye-tracking data. Human-Computer

Interaction, 21(2), 153-197.

Goldstein, D. G., & Gigerenzer, G. (2002). Models of

ecological rationality: The recognition

heuristic. Psychological Review, 109(1), 75.

Greene, K. K. (2010). Effects of Multiple Races and Header

Highlighting on Undervotes in the 2006 Sarasota General

Election: A Usability Study and Cognitive Modeling

Assessment (Doctoral dissertation). Rice University,

Houston, TX.

Halbrügge, M., Quade, M., & Engelbrecht, K. P. (2015). A

predictive model of human error based on user interface

development models and a cognitive architecture.

In Proceedings of the 13th International Conference on

Cognitive Modeling (pp. 238-243). University of

Groningen, Groningen, the Netherlands.

Laskowski, S. J., Autry, M., Cugini, J., Killam, W., & Yen,

J. (2004). Improving the usability and accessibility of

voting systems and products. NIST Special Publication

500-256. Retrieved from https://user-

centereddesign.com/files/NISTHFReport.pdf.

Lebière, C., Anderson, J. R., & Reder, L. M. (1994). Error

modeling in the ACT-R production system.

In Proceedings of the Sixteenth Annual Conference of the

Cognitive Science Society (pp. 555-559). Erlbaum

Hillsdale, NJ.

Lindstedt, J. K., & Byrne, M. D. (2018). Simple

agglomerative visual grouping for ACT-R. In I. Juvina, J.

Houpt, & C. Myers (Eds.), Proceedings of the 16th

International Conference on Cognitive Modeling (pp. 68-

73). Madison, WI: University of Wisconsin.

Miller, J. M., & Krosnick, J. A. (1998). The impact of

candidate name order on election outcomes. Public

Opinion Quarterly,62(3), 291-330.

Schooler, L. J., & Anderson, J. R. (1997). The role of

process in the rational analysis of memory. Cognitive

Psychology, 32(3), 219-250.

Trafton, J. G., Altmann, E. M., & Ratwani, R. M. (2011). A

memory for goals model of sequence errors. Cognitive

Systems Research, 12(2), 134-143.

Wand, J. N., Shotts, K. W., Sekhon, J. S., Mebane, W. R.,

Herron, M. C., & Brady, H. E. (2001). The butterfly did

it: The aberrant vote for Buchanan in Palm Beach County,

Florida. American Political Science Review, 95(4), 793-

810.

