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Abstract 

 
This paper presents a family of models of a voting task we 
developed in order to investigate how errors arise from the 
interaction between strategy and knowledge. We crossed four 
task strategies with five different declarative memories and 
two visual strategies to yield a total of 40 different ACT-R 
models, and then tested the models through Monte Carlo 
simulations with 500 runs of each model. The findings 
suggest that some strategies work best when knowledge is 
incomplete, and that more task knowledge can lead to more 
errors in the recall process. These results highlight the 
importance of studying human error using a thorough 
exploration of the strategy space. 
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Introduction 

Human error is important for both theoreticians and 

practitioners to understand human cognition and 

performance. While theoreticians like to collect and classify 

errors, practitioners are more interested in their remediation, 

prevention, and even elimination. However, research on 

how to bridge the gap between the theoretical and practical 

areas is still not particularly common. In this paper, we 

describe an error prediction method that connects theoretical 

and practical work on human errors. This method accounts 

for human performance in routine behaviors using 

computational modeling and ultimately we hope can be used 

to predict human error before a system is implemented. 

Error prediction methods are often based on traditional 

hierarchical task models (e.g., Annett & Duncan, 1967), 

which often assume that the processing system is explicitly 

hierarchical in structure and therefore break down complex 

tasks into hierarchies and sub-goals. Botvinick and Plaut 

(2004) suggested that hierarchical schemas and goals are not 

always necessary, at least in routine behavior. Instead, they 

presented a recurrent network model that uses recurrent 

connections within a network, which map from 

environmental inputs to action outputs, to represent an 

everyday task. However, Cooper and Shallice (2006) 

contrasted this recurrent network model with their more 

traditional, hierarchically structured interactive activation 

model. They criticized Botvinick and Plaut’s recurrent 

network approach, describing a set of problems with the 

approach, such as its behavioral inflexibility, and concluded 

that hierarchical structures are still necessary and play a 

causal role in the control of behavior. 

Another approach to studying human error is to create 

human performance models using ACT-R (Anderson, 

2007). This goes one step beyond models based on a 

traditional hierarchical structure by using cognitive 

architectures. ACT-R is a computational cognitive 

architecture that simulates and integrates human cognition, 

attention, and motor behavior. This helps researchers to 

understand how people organize knowledge and produce 

behavior in different ways. There are several published 

ACT-R models that can make the same errors as people 

(e.g., Anderson, et al., 1998; Halbrügge, Quade, & 

Engelbrecht, 2015; Lebière, Anderson, & Reder, 1994; 

Trafton, Altmann, & Ratwani, 2011). 

However, it is not easy to predict human error using 

ACT-R. First, there are many types of errors, but a human 

performance model usually only makes a specific kind of 

error. If there is a complex working system that contains 

several sub-tasks, it will take time and effort to create 

models that cover all possible errors. Second, in general, 

computational human performance models are fitted to 

and/or make predictions about average human behavior. 

However, predicting errors cannot simply be a question of 

fitting the mean, because even if the average person does 

not make an error, there may still be a substantial number 

who do. 

Our domain for error modeling is voting. People usually 

think that filling out a ballot is a simple task, but, in reality, 

unintentional undervotes, overvotes, or votes for the wrong 

candidate are very common in almost all elections. An 

undervote occurs when the number of votes is less than the 

maximum number allowed in a race, and an overvote occurs 

when the number of votes is more than the maximum 

number allowed. One reason for all these errors lies in the 

poor designs of the ballots, which fail to support human 

perceptual and cognitive limitations. There is clear evidence 

that ballot design problems have affected the outcomes of 

multiple elections in the United States (Laskowski et al., 

2004). For example, more than 2,000 votes intended for 

Gore were cast for Buchanan in Palm Beach County, 

Florida, during the 2000 elections due to the use of the 

infamous butterfly ballot (Wand et al., 2001). 

A standard usability evaluation prior to deployment 

would likely detect poor designs and prevent errors. 

However, usability specialists are rarely asked to perform 

such tests prior to an election. Instead, election officials, 

who have little formal training or the expertise in assessing 



ballots, are left to the task. In addition, most elections in the 

U.S. are administered at the county level, and there are over 

3,000 counties in the U.S. Within each county, there are 

often hundreds of different precincts, each with a slightly 

different ballot style, meaning that, for each national 

election, tens of thousands of ballot designs are deployed. 

This makes conducting a traditional usability test for every 

single ballot intractable due to the problem scale. 

While it is impossible to perform usability testing on 

every ballot before every election deployment, some initial 

work has been done on predicting errors in voting tasks. In 

Greene (2010), an ACT-R model was presented that could 

sometimes make the same mistake that voters made in 

Sarasota, Florida in 2006. In this case, the first DRE screen 

contained one race, but there were two races presented on 

the second screen. This layout inconsistency led to 13.9% of 

votes being undervotes in the top race on the second screen. 

Greene modeled these first two screens to explore two 

voting strategies. The first strategy was to read the first 

screen from top to bottom before selecting a candidate, and 

then recall a useful location from the first screen to use to 

direct the visual search on the next screen. With this 

strategy, the model used the first screen to set expectations 

about where to find relevant landmarks (e.g., titles of races); 

it could then miss the critical top race on the second screen 

when the model extended those expectations from one 

screen to the next. The second strategy was to read both 

screens from top to bottom, without any recall. In contrast to 

the first strategy, the second strategy did not result in a 

critical top race undervote. 

Greene’s (2010) model offers a meaningful opportunity 

for computational human performance modeling to make a 

unique contribution to the voting field. However, this model 

does not reflect the full complexity of voting. Different 

voters almost certainly approach ballots differently. It is 

therefore critical that the models reflect not just one or two 

voting strategies, but the entire range of behaviors, so that 

specific interactions between voting strategies and ballot 

designs can be uncovered. 

To capture more of the voting complexity, we developed 

a model-based approach that covers a family of voting 

strategies using ACT-R. For each model, the memory 

strategy, ballot knowledge, and visual search strategy were 

considered independently. Memory strategy represents how 

voters access their memories when they cast a vote; ballot 

knowledge defines voters’ level of knowledge of the races 

and candidates; and visual search strategy indicates voters’ 

visual directions when conducting a visual search. In total, 

our system consists of 40 voting models that crossed four 

memory strategies with five kinds of ballot knowledge and 

two visual strategies. 

When it comes to visual search, humans have a 

remarkable ability to organize their perceptual inputs. The 

human visual system tends to group individual items in a 

visual image into larger structures under certain 

circumstances. This allows for the more efficient use of 

attention but sometimes leads to critical errors in executing 

a task. For example, the ballot used in Wisconsin in 2002 

led to many unintentional votes. On this ballot, the race for 

governor was split across two columns, which led many 

voters to consider the two visual groups as two races. Many 

voters voted twice, once in each column. To handle 

situations like this, our system makes use of a visual 

grouping algorithm that enables more realistic visual 

scanning behaviors (Lindstedt & Byrne, 2018). 

In short, our model-based system assessed a ballot layout 

with a family of voting models. Each voting model was 

tested multiple times, and the average across those runs was 

calculated. After running every ballot through each model 

repeatedly, all combinations of strategies and knowledge 

that generated high error rates were identified.  

 

The Voting Task 

Our system was implemented for an emulated voting task 

using the VoteBox task environment. Multiple experiments 

have been published in which human subjects voted using 

VoteBox (e.g., Everett, 2007; Everett, et al., 2008). This 

voting task contains 21 races that share a consistent layout 

(see Figure 1). The layout was designed to be easy to 

understand, with a relatively simple display that comprised 

the voting instructions, title of the race, candidates’ names 

and party affiliations, a “previous page” button, and a “next 

page” button, all clearly arranged and presented across the 

screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mock ballot of a presidential race. 

 

All versions of the model contain two phases. The first is 

a studying phase in which the model studies the display 

thoroughly to retain group information produced by the 

visual grouping algorithm. The second phase is a voting 

phase; after obtaining and storing group information during 

the first phase, the model now has expectations about where 

to look. It directs its gaze to the appropriate place and then 

makes a vote. 



Modeling Strategies 

A total of 40 voting models were developed. Each model 

includes a memory strategy, ballot knowledge, and a visual 

search strategy. To produce a comprehensive error 

prediction, multiple plausible versions were considered for 

each component. The details of each component are 

described in the sections below. We defined four memory 

strategies, five kinds of ballot knowledge, and two visual 

search strategies. 

 

Memory Strategies 

Voters have to remember their choices, and they access their 

memories in different ways. There are two primary memory 

strategies for simple form-filling tasks like voting: retrieval 

and recognition. Some voters can simply recall the names of 

those for whom they intend to vote, at least in some 

races. For example, many voters, when prompted, can 

retrieve from memory the candidate for whom they intend to 

vote in presidential elections. Other voters may instead scan 

the list of names first to try to recognize their preferred 

candidates. Some voters vote almost exclusively according 

to party affiliation but then have to remember which races, 

if any, have exceptions. Some voters may rely on party 

affiliation if they can neither recall for whom they intended 

to vote nor recognize any of the candidates’ names on the 

list. While some voters may also write out a list and bring it 

into the voting booth, it is not clear how common this is, 

and it is, in fact, illegal in some jurisdictions. So, we did not 

consider this strategy. 

Our models capture four memory strategies one could 

reasonably expect a voter to employ—a strictly retrieval-

based strategy, a strictly recognition-based strategy, a 

retrieval-then-recognition contingency strategy, and a 

simple party-only look-up strategy (in case of exceptions to 

their default party). The first strategy represents the scenario 

in which the model first tries to retrieve the candidate’s 

name from memory. If the model fails to recall the name, 

then it relies simply on a party affiliation. The second 

strategy considers the situations in which the model first 

tries to retrieve their choice, but, if the retrieval fails, it then 

scans the list of names and votes for the one it recognize. If 

recognition also fails, it votes by party affiliation. For the 

third strategy, the model does not even attempt to retrieve; 

rather, it scans the list of names to see if it can recognize 

any of them. If recognition fails, it votes by party. For the 

last strategy, the model simply votes based on party 

affiliation. It first retrieves the specific party affiliation for 

specific races, but, if the retrieval fails, default party 

affiliation becomes the only criterion. The last step of these 

four memory strategies—voting by default party 

affiliation—is used only when all the previous steps fail. 

The default party affiliation could be either the Democratic, 

Republican, or Libertarian Party.  

Other memory strategies are certainly possible, but it is 

unclear how a voter could use the contents of their memory 

to vote in a meaningfully different manner without 

substantial overlap with one of the strategies listed above.  

 

Ballot Knowledge  

Voters have different levels of knowledge about the races 

and candidates. Some voters might have encoded all of the 

candidates’ names, some may only know the names of 

candidates they intend to vote for, and some may only have 

parts of the intended candidates’ names in their memories. 

In addition, ballot knowledge is not always easy to recall. 

Some voters may only remember their choices for the first 

few races because it is much more likely that voters will 

have more frequent exposure to top-of-the-ballot candidates. 

ACT-R represents situations like this using base-level 

activation, which reflects the recency and frequency of a 

specific memory. 

 
Table 1: Ballot Knowledge 

 

Ballot 

Knowledge 

Candidates’ Names  Activations for Intended 

Candidates 

FULL-

MEMORY 

All candidates Races 1 to 7: 0.7 

Races 8 to 14: 0.6 

Races 15 to 21: 0.5  

ALL-

ROLLOFF 

Intended 

candidates only 

Races 1 to 7: 0.7 

Races 8 to 14: 0.6 

Races 15 to 21: 0.5 

ALL-

PERFECT 

Intended 

candidates only 

All races: 0.8 

MOST-

ROLLOFF 

70% of intended 

candidates 

Races 1 to 3: 0.8 

Races 4 to 7: 0.7 

Races 8 to 11: 0.6 

Races 12 to 15: 0.5 

Race 16 to 21: Abstained  

MOST-

PERFECT 

70% of intended 

candidates 

Race 1 to 15: 0.8 

Race 16 to 21: Abstained 

 

Five ballot knowledge types were therefore created (see 

Table 1). First, we defined three levels of how many 

candidates’ names were stored. The models could remember 

all candidates’ names, only the intended candidates’ names, 

or only the first 70% of the intended candidates’ names. 

Then, we assigned two types of activations for intended 

candidates: roll-off activations and constant high-level 

activations. Models with roll-off activations are most 

familiar with the candidates for the first several races; then, 

as they progress down the ballot, their familiarity with 

candidates decreases. In the second condition—constant 

high-level activations—the models are highly familiar with 

all races to the same degree. Note that the various contents 



and activation levels of memory were not chosen as an 

exhaustive search of all possible knowledge held by voters, 

but rather as an illustrative sample of common voter 

scenarios—some voters have certainly done their homework 

extensively, while others have likely only decided 

“important” races. 

 

Visual Search Strategies 

While reading in a serial order is the most common search 

strategy, eye-tracking studies have demonstrated that it is 

not universal (Aaltonen, Hyrskykari, & Räihä, 1998; 

Fleetwood & Byrne, 2006). People scan displays in different 

ways: some readers read in a serial, item-by-item pattern, 

from one corner to its diagonal opposite; some people scan 

globally and read all the bold, large, or colored headers first; 

and some simply prefer to scan randomly. 

Two visual search strategies were used when looking for 

candidates: a serial search and a random search. The serial 

search strategy is a serial item-by-item search with a left-to-

right, top-to-bottom pattern. With the random search 

strategy, the models conduct a random search. 

 

Model Evaluation 

Method 

The first issue to address is the number of Monte Carlo 

replications. We used the approach outlined in Byrne (2013) 

based on confidence intervals. We expected the overall error 

rate generated by the model to be around 5% and wanted the 

95% confidence intervals for the model predictions to be no 

wider than 2% in either direction. The table in Byrne (2013) 

shows this requires 457 model runs; we ran 500 per model 

to be slightly more conservative. 

 

Error Predictions 

For each model run, the ballot, as completed by the model, 

was compared with the “intent” initialized at the beginning 

of the run, and any discrepancies were noted as errors. 

Errors occurred across the entire voting process. The model 

might have retrieved an unintended name, recognized an 

unintended name, or failed to retrieve and then recognized 

an unintended name. For the model that simply made votes 

based on party affiliation, it may have retrieved an 

unintended party. The model may even have failed to 

retrieve and/or recognize an intended name, and then have 

voted by default party affiliation. We used Democratic as 

the default party affiliation for this model evaluation; 

however, intended candidates’ party affiliations did not 

always match the default party affiliation. The model 

occasionally also mis-clicked on the name above or below 

the intended name.  

Overall, our models generated an average 5% error rate 

across all voting models. This is somewhat higher than 

 

Figure 2: Interaction between memory strategy and ballot knowledge in voting error rates. The bars show voting errors. 

The five ballot knowledge types are written along the top; each shows the error rates for the four memory strategies. The 

three colors of the bars indicate the three kinds of processes the model used when it made an error. Red, green, and blue 

represent the party affiliation, recognition, and retrieval, respectively. 

 

 



observed human error rates of around 1.5% (e.g., Everett, et 

al. 2008) and unfortunately it is impossible to compare our 

models directly to human data since we cannot know the 

strategies used by people in such studies. Instead, we are 

interested in how the model strategies interact to produce 

errors. 

Differences in error rates with visual strategies were not 

found, which means that using either a serial or a random 

scanning pattern did not affect the voting results. The main 

story here is therefore about memory strategy and ballot 

knowledge. We observed differences in voting errors based 

on the interaction between voting strategy and ballot 

knowledge. 

Figure 2 presents five groups of bars that represent the 

error rates of the five kinds of ballot knowledge. For each 

type of ballot knowledge, the percentages of the errors for 

the four memory strategies are displayed. For the FULL-

MEMORY condition, the model generated 9% more errors 

than the other four ballot knowledge types. The model also 

generated more errors with roll-off activations for intended 

candidates. For the MOST-ROLLOFF and ALL-ROLLOFF 

conditions, the voting model was 2% more likely to make 

errors than with the MOST-PERFECT and ALL-PERFECT 

conditions. Additionally, for these four levels of ballot 

knowledge other than FULL-MEMORY, there were clearly 

fewer errors with the three-step “retrieve-recognize-party” 

memory strategy. 

We then investigated the error attributions for each vote 

to determine which process the model was using when it 

made an error. In Figure 2, each bar is partitioned into three 

colors, which represent the three kinds of process the model 

was using when it made an error: retrieval, recognition, or 

party affiliation. For the FULL-MEMORY condition, most 

of the errors occurred in the recognition and/or retrieval 

processes. Within FULL-MEMORY, 7% more voting errors 

were generated with the “recognize-party” memory strategy. 

However, for the other four kinds of ballot knowledge, 

differences in error attributions with memory strategies were 

not apparent; most of the errors were generated in the last 

steps—voting by party affiliation. 

 
Discussion 

The error predictions indicate that extra ballot knowledge 

actually led to more errors, especially with the involvement 

of recognition. Common sense would suggest that a broader 

knowledge base should help to mitigate mistakes, but this is 

not always the case. Another example that also suggests that 

a strategy works best when knowledge is incomplete is the 

recognition heuristic. The recognition heuristic describes a 

situation where, if one of two objects is recognized and the 

other is not, the recognized object is more likely to be 

selected (Goldstein & Gigerenzer, 2002). This strategy 

requires ignorance to make a choice—if people know 

everything or nothing about the options, it simply does not 

work. For example, for the question “which city has a larger 

population?” most people choose Dublin over Nenagh since 

they can recognize Dublin only, but it is harder for people to 

make a selection if the choices become San Diego and San 

Antonio, as they are more likely to recognize both of these 

cities. Similarly, in the voting task in our study, the models 

knew everything in the FULL-MEMORY condition, 

including both the intended and unintended candidates’ 

names. Thus, compared to the other four ballot knowledge 

types, the memory strategies did not work well with FULL-

MEMORY, and more errors occurred in the recognition 

processes. 

Because of the more frequent recognition errors, one 

thing we can expect with the FULL-MEMORY condition is 

a greater impact of candidate name order. Voters who 

cannot recall their intended candidate’s name must scan the 

list of names and see if they can recognize any, and their 

choices can be biased by the order in which candidates’ 

names appear on the ballot (Miller & Krosnick, 1998). In 

our study, the model with “recognize-party” memory 

strategy checks each candidate, sees if it recognizes, and if 

so, votes for it. Since some voters use top-to-bottom visual 

search, an advantage for the top candidate can be predicted. 

Another finding has to do with the interaction between 

task knowledge and recall performance. Schooler and 

Anderson (1997) suggested an association between the 

number of choices and recall performance, positing that the 

more choices we have, the more likely we are to make a 

recall error at each name. We observed the same 

relationship in our models. The FULL-MEMORY condition 

contains both intended names and unintended names, and 

the models could either retrieve an intended name or an 

unintended name for each race in that condition. It was 

therefore more likely to make errors in the retrieval process 

since incorrect answers are available. However, with the 

other four ballot knowledge types, there are only intended 

names available in memory. Wrong names were therefore 

less likely to be retrieved with these four levels of 

knowledge. 

We can also conclude from the error predictions that the 

three-step “retrieve-recognize-party” memory strategy had a 

better performance than the two-step memory strategies. As 

can be seen in Figure 2, a large portion of the errors came 

from the last steps, voting by party affiliation, across five 

levels of knowledge. Comparing to the two-step strategies, 

the additional one step prevented errors that could be made 

in the last step, and so the least amount of errors was 

generated with the three-step memory strategy. 

Note that the errors made here are not the result of poor 

ballot design. However, we believe that further interactions, 

those between strategy, knowledge, and ballot design, will 

show how the visual layout of the ballot can influence error 

rates. Poor layouts may not induce all voters into error, but 

differentially affect those who use particular strategies. 

Furthermore, we believe that these kinds of errors are not 

limited only to filling out ballots, but likely occur in other 



tasks that are essentially form fill-in, such as interacting 

with electronic health records. 

Our model-based system represents the first use of ACT-

R as an error prediction tool to diagnose if there are 

particular combinations of strategies that lead to error. The 

idea that one can understand the error space by modeling 

only one strategy or predicting mean behavior is likely to 

miss critical combinations of factors that produce errors. 

Our results demonstrate that subtle interactions between 

strategy and knowledge can have substantial effects on error 

rates. Thus, it is critical to consider multiple combinations 

of both when attempting to model errors, even in a task that 

appear as simple as voting. 
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