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Computational Modeling Reveals How Navigation Strategy and Ballot Layout Lead 

to Voter Error 

by 

Xianni Wang 

  
Bad ballot design has affected the outcome of multiple elections in the United 

States. In order to build an automated tool for evaluation of ballots for potential usability 

problems, a range of voting behaviors on different ballot layouts have to be understood 

and modeled. The current studies are focussed on full-face paper ballots. Study 1 is an 

eye-tracking study. The ways that voters seek information on a full-face paper ballot was 

examined and the insights from the analysis results were integrated into Study 2. Study 2 

is a cognitive modeling study. A family of 160 voting strategies were modeled using 

ACT-R to investigate how errors arise from the interaction of strategy and ballot design. 

The model was then validated by testing on a well-known bad ballot: the ballot from 

Kewaunee County, Wisconsin 2002. The Wisconsin error was reproduced successfully. 
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Chapter 1 

Introduction 

In the United States, voting is an indispensable cornerstone of democracy and it 

provides citizens the right to express their preferences and make their voices heard. 

Anything that can cause the final tally to mismatch the intent of the voters is a threat to 

the integrity of the election. People usually think that filling out a ballot is a fairly simple 

task and it is unlikely to make mistakes throughout the process, nevertheless, voting 

errors are very common in almost all elections. There is strong evidence that the failure 

of the voting system—in particular, the design of the ballot—to accurately capture the 

voters’ intent have affected the outcome of multiple elections in the United States 

(Laskowski et al., 2004). 

Failure to capture voters’ intent is essentially a usability problem. However, the 

usability of voting systems has received surprisingly little research attention over the 

years, and virtually none until the rear 2000. The majority of concerns on voting systems 

have been focused on election security. For example, some security researchers have 

been working on protection of the ballot or ballot box (e.g., preventing altering ballots or 

faking ballots) or the link from ballots to canvass (e.g., malicious alterations of the tally 

procedure). More recently, however, some consideration of the front end of this process 

has been undertaken by election security researchers, such as discussion of voter-

verifiable paper audit trails (VVPATs). VVPAT is a method that allows election officials 

to confirm if the results collected by electronic voting systems accurately reflect the 
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voters’ intent. Meanwhile, it provides voters a second chance to verify if their choices 

were recorded correctly. 

VVPATs are a step in the right direction in that the voter’s role in the system has 

been considered, but even if the additional security procedures such schemes that require 

of voters are usable, the voting system still critically depends on correctly capturing the 

voter’s intent. Failure of ballots to accurately capture the voters’ intent threatens the 

integrity of the election just as much as a failure anywhere else in the chain. Even if the 

ballots and tally procedures are 100% secure, if the ballots themselves misrepresent the 

voters’ intent, the election outcome will not necessarily represent the will of the voters. 

Therefore, it is very important for election officials to evaluate their ballot designs prior 

to deployment in election to avoid potential usability problems. 

Ideally, conducting pre-election usability tests of every ballot would prevent 

error-producing ballot layouts. However, usability testing is normally time-consuming, 

expensive, and requires expertise, but many of the ballots have to be modified close to 

election day due to late changes (e.g., candidates who withdraw or are deemed 

ineligible). It is thus nearly impossible to evaluate thousands of ballot styles that 

deployed in every election all across the country through usability testing. 

An automated evaluation system that does not require in-lab usability experiments 

and much time would be a great substitute for pre-election usability tests. The system 

should have the capability of assessing any ballot layout with a family of voting models 

that can simulate the entire space of possible voting behaviors. After running every ballot 

through each voting model repeatedly, the system will produce an assessment of whether 

the ballot is likely to lead to errors and at which parts of the ballot errors may occur. As a 
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result, election officials would get the opportunity to modify their ballot designs 

accordingly prior to elections. 

The goal of this thesis research is to expand the science necessary to support the 

development of the automated system for usability evaluation of ballots. This research 

builds upon several studies in which voting behaviors on different versions of single-

race-per-screen ballots were learned and modeled. The two studies reported here are 

aimed to understand voting behaviors on full-face paper ballots, to expand the strategy 

space, and to develop human behavior models that cover a range of voting behaviors on 

full-face ballots. 

1.1 Examples of Poor Ballot Design 

Poor ballot design is a major usability problem in voting: some ballots fail to take 

into account human perceptual and cognitive limitations, and thus votes for the wrong 

candidate, as well as unintentional undervotes and overvotes, are very common in almost 

all elections. An undervote occurs when the number of votes is less than the maximum 

number allowed in a race. Voters have the right to undervote if they choose to do so. An 

overvote occurs when the number of votes is more than the maximum number allowed. 

The race that is overvoted cannot be counted in the final tally. 

One of the most infamous error-inducing ballots is the “butterfly ballot” from 

Palm Beach County, Florida during the 2000 election (Wand et al., 2001; see Figure 1.1). 

This ballot presented candidates in the presidential race across two columns; the 

democratic candidates are listed second on the left, but they correspond to the third hole 

on the ballot. As a result of the inconsistency, more than 2,000 votes intended for Gore 

were cast for Buchanan instead. 
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Figure 1.1 : The “butterfly ballot” from Palm Beach County, Florida 2000. The 
democratic candidates are listed second on the left, but they correspond to the third hole 

in the middle. Many voters who intended to vote for democratic candidates ended up 
filling out the second hole. 

 

Another example of poorly designed ballot is the ballot used in Wisconsin in 

2002, which led to many unintentional overvotes (see Figure 1.2). On this ballot, the race 

for Governor was split across two columns. Many voters considered the two sections as 

representing two races, causing them to vote twice, once in each column, thus rendering 

an invalid vote rate of 11.8% for this race, in contrast to an invalid vote rate of 1% for 

this race statewide (Norden et al., 2008). 
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Figure 1.2 : The ballot from Kewaunee County, Wisconsin 2002. The gubernatorial race 
was split across two columns. Many voters considered them as two different races and 

voted twice. 
 

A more recent example is the ballot used in Broward County, Florida in 2018, 

which caused many unintentional undervotes. As can be seen in Figure 1.3, there were 

two races placed beneath the ballot instructions. Voters who skipped over the instructions 
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were in danger of skipping past these two races to the top of the middle column. 

Therefore, this ballot design caused more than 26,000 undervotes in the Senate race, 

where the margin of victory was about 13,000 votes (Appel, 2018). 

 

Figure 1.3 : The ballot from Broward County, Florida 2018. There were two races placed 
beneath the ballot instructions. Some voters who skipped over the instructions skipped 

past these two races to the top of the middle column. 
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1.2 Predicting Errors in Filling out Ballots 

A standard usability evaluation prior to deployment would likely detect most poor 

ballot designs and prevent most errors. However, few usability specialists have been 

asked to perform such tests prior to an election. Instead, election officials, who have little 

formal training or expertise in assessing usability, are left to the task. In addition, most 

elections in the United States are administered at the county level, and there are over 

3,000 counties in the country. Within each county, there are often hundreds of different 

precincts, each with a slightly different ballot style. Thus, for each national election, tens 

of thousands of ballot designs are deployed. The scale of this problem makes conducting 

a traditional usability test for every single ballot intractable. 

Because it is impossible to perform traditional usability testing on every ballot 

before every election deployment, examining ballots through an automated error 

prediction tool would be a preferable solution. Error prediction methods are often based 

on traditional hierarchical task models (e.g., Annett & Duncan, 1967), which often 

assume that the processing system is explicitly hierarchical in structure and therefore 

break down complex tasks into hierarchies and sub-goals. Botvinick and Plaut (2004) 

suggested that hierarchical schemas and goals are not always necessary, at least in routine 

behavior. Instead, they presented a recurrent network model that uses recurrent 

connections within a network, which map from environmental inputs to action outputs, to 

represent an everyday task. However, Cooper and Shallice (2006) contrasted this 

recurrent network model with their more traditional, hierarchically structured interactive 

activation model. They criticized Botvinick and Plaut’s recurrent network approach, 

describing a set of problems with the approach, such as its behavioral inflexibility, and 
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concluded that hierarchical structures are still necessary and play a causal role in the 

control of behavior. 

 Another approach to studying human error is to create human performance 

models using ACT-R (Anderson, 2007). This goes one step beyond models based on a 

traditional hierarchical structure by using cognitive architectures. ACT-R is a cognitive 

architecture that simulates and integrates human cognition, attention, and motor behavior. 

Generally speaking, an ACT-R model of a task consists of both the architecture and the 

requisite knowledge to perform the specific task, and it is often connected to a simulation 

of the environment in which the task is performed or the actual software that humans use 

to perform the task. Therefore, ACT-R can help researchers to understand how people 

organize knowledge and produce behavior in different ways. 

However, it is not easy to predict voting errors using ACT-R. First, in general, 

ACT-R models are fitted to and/or make predictions about average human behavior. 

However, predicting voting errors cannot simply be a question of fitting the mean, 

because even if the average person does not make an error, there may still be a substantial 

number who do. Second, there are many types of voting errors: unintentional overvotes 

and undervotes, filling in a wrong bubble, etc. Therefore, it takes time and effort to create 

models that cover all possible errors. 

1.3 Using ACT-R to Model Voting Behaviors 

Using ACT-R to study human performance and errors is not a new idea. There are 

several published ACT-R models that can make the same errors as people (e.g., Anderson 

et al., 1998; Halbrügge et al., 2015; Lebière et al., 1994; Trafton et al., 2011). Some error 

prediction models have also been developed for voting tasks. 
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1.3.1 Greene’s Model 

In Greene (2010), an ACT-R model was presented that could sometimes make the 

same mistake that some voters ever made. In 2006 election, voters in Sarasota, Florida 

voted through direct recording electronic voting systems (DRE) that do not need physical 

ballots and can record votes directly onto computer memory devices. The incident 

occurred in the Congressional election. As can be seen in Figure 1.4, there was a single 

race present on the first DRE screen, but there were two races listed on the second screen. 

Also, the race heading “Congressional” was not present above the US Representative 

race as it was on the first screen. This layout inconsistency led to an undervote of 13.9% 

(about 18,000 votes) for the US Representative race, where the margin of victory was 

about 380 votes. 

 

Figure 1.4 : Two screen captures from the 2006 Sarasota County electronic voting 
system. First screen is on the left (one race presented), second screen is on the right (two 
races presented). Many voters failed to vote for the US Representative race that displayed 

on the top of the second screen. 
 

Greene (2010) reproduced these two screens and modeled two voting strategies. 

The first strategy was to read the first screen from top to bottom before selecting a 
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candidate, and then to recall a useful location from the first screen to use to direct the 

visual search on the next screen. With this strategy, the model used the first screen to set 

expectations about where to find relevant landmarks (e.g., titles of races); it could then 

miss the critical top race on the second screen when the model extended those 

expectations from one screen to the next. The second strategy was to read both screens 

from top to bottom, without any recall. In contrast to the first strategy, the second strategy 

did not result in a critical top race undervote. 

At the first glance, it seems that the header highlighting was the cause of the 

undervotes. However, Greene (2010) came to the opposite conclusion—undervote error 

rates were actually greater with header highlighting than without. In addition, Greene’s 

studies suggested that the presentation of multiple races had a significant effect on the 

undervotes in the US Representative race; the interaction of poor ballot design and voting 

strategies played an important role in causing the undervotes. 

1.3.2 Multi-Strategy Model 

Greene’s (2010) model offers a meaningful opportunity for computational human 

performance modeling to make a unique contribution to the voting field. However, this 

model does not reflect the full complexity of voting. Different voters almost certainly 

approach ballots differently. It is therefore critical that the models reflect not just one or 

two voting strategies, but the entire range of voting behaviors, so that specific 

interactions between voting strategies and ballot designs can be uncovered. To capture 

more of the voting complexity, a family of 40 ACT-R models of a voting task was 

developed (Wang et al., 2019). For each model, the memory strategy, ballot knowledge, 

and visual search strategy were considered independently. 
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Memory strategy represents how voters access their memories when they cast a 

vote. Voters have to remember their choices, and they access their memories in different 

ways. There are two primary memory strategies for simple form-filling tasks like voting: 

recall and recognition. Some voters can simply recall the names of those for whom they 

intend to vote, at least in some races. For example, many voters, when prompted, can 

recall from memory the candidate for whom they intend to vote in presidential elections. 

Other voters may instead scan the list of names first to try to recognize their preferred 

candidates. Some voters vote almost exclusively according to party affiliation but then 

have to remember which races, if any, have exceptions. Some voters may rely on party 

affiliation if they can neither recall for whom they intended to vote nor recognize any of 

the candidates’ names on the list. Some voters may also write out a list and bring it into 

the voting booth, although it is not clear how common this is, and it is, in fact, illegal in 

some jurisdictions. Note that in this scenario, the voters effectively use a recall strategy as 

well. They just have a 100% success rate of recall for every race. 

Ballot knowledge refers to voters’ level of knowledge of the races and candidates. 

Voters have different levels of knowledge about the races and candidates: some voters 

might have encoded all of the candidates’ names, some may only know the names of 

candidates they intend to vote for, and some may only have partial lists of the intended 

candidates’ names in their memories. In addition, ballot knowledge is not always easy to 

recall. Some voters may only remember their choices for the first few races because it is 

much more likely that voters will have more frequent exposure to top-of-the-ballot 

candidates. ACT-R represents situations like this using base-level activation, which 

reflects the recency and frequency of a specific memory. 
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Visual search strategy indicates voters’ visual directions when conducting a visual 

search. While reading in a serial order is the most common search strategy, eye-tracking 

studies have demonstrated that it is not universal (Aaltonen et al., 1998; Fleetwood & 

Byrne, 2006). People scan displays in different ways: some readers read in a serial, item-

by-item pattern, from one corner to its diagonal opposite; some people scan globally and 

read all the bold, large, or colored headers first; and some simply prefer to scan 

randomly. Furthermore, humans have a remarkable ability to organize their perceptual 

inputs. The human visual system tends to group individual items in a visual image into 

larger structures under certain circumstances. This allows for the more efficient use of 

attention but sometimes leads to critical errors in executing a task. For example, the poor 

ballot used in Wisconsin in 2002 misled the human visual system, which caused 

unintentional overvotes in the race for Governor. To handle situations like this, the multi-

strategy model makes use of a visual grouping algorithm that enables more realistic 

visual scanning behaviors (Lindstedt & Byrne, 2018). 

1.3.2.1 The Voting Task 

To simulate the various abovementioned human performance in an emulated 

voting task, the models voted on a version of the VoteBox task environment. VoteBox is 

a DRE platform developed by Sandler, et al. (2008); it is a research platform that helps to 

investigate both usability and security issues in voting systems, and multiple experiments 

have been published in which human subjects voted using VoteBox (e.g., Everett, 2007; 

Everett et al., 2008). The voting task consists of 21 races that share a consistent layout 

(see Figure 1.5). The layout was designed to be easy to understand, with a relatively 

simple display that comprised the voting instructions, title of the race, candidates’ names 
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and party affiliations, and “previous page” and “next page” buttons, all clearly arranged 

and presented. 

 

Figure 1.5 : VoteBox mock ballot of a Presidential race. All elements (voting 
instructions, title of the race, names, and party affiliations) were clearly arranged and 

displayed. 

 

All versions of the voting model go through two phases. The first is a studying 

phase in which the model studies the display thoroughly to retain group information 

produced by the visual grouping algorithm (see Figure 1.6). First, the grouping algorithm 

takes an unexamined point from the screen as the starting point and assigns it to the 

current group. Then, the algorithm examines and adds any other points within a pre-

determined grouping radius to the current group. Next, it repeats the previous step for 

each new point added and keeps growing the current group, until no unexamined points 

remain within the radius of any group members. After that, it selects another unexamined 
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point as a new starting point, and just repeats the entire process until all points in the 

scene have been assigned to a group. 

The second phase is a voting phase; after obtaining and storing group information 

during the first phase, the model now has expectations about where to look. It directs its 

“gaze” to the appropriate place and then makes a vote. In this phase, the models may 

perform differently because each model simulate a specific combination of memory 

strategy, ballot knowledge, and visual search strategy. 

 
Figure 1.6 : The outcome of the visual grouping algorithm. 11 visual groups (indicated by 

different colors) are identified in this mock ballot layout. 

 

1.3.2.2 Modeling Strategies 

To produce a comprehensive error prediction, four memory strategies, five levels 

of ballot knowledge, and two visual search strategies were defined. First, the models 

capture four memory strategies that one could reasonably expect a voter to employ: a 
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strictly retrieval-based strategy, a strictly recognition-based strategy, a retrieval-then-

recognition contingency strategy, and a simple party-only look-up strategy (in case of 

exceptions to the voter’s default party). The first strategy represents the scenario in which 

the model first tries to retrieve the candidate’s name from memory. If the model fails to 

recall the name, then it relies simply on party affiliation. The second strategy considers 

the situations in which the model first tries to retrieve the candidates’ name, but, if the 

retrieval fails, it then scans the list of names and votes for the one it recognizes. If 

recognition also fails, it votes by party affiliation. For the third strategy, the model does 

not even attempt to retrieve; rather, it scans the list of names to see if it can recognize any 

of them. If recognition fails, it votes by party. For the last strategy, the model simply 

votes based on party affiliation. It first retrieves the specific party affiliation for particular 

races, but, if the retrieval fails, default party affiliation becomes the criterion. The last 

step of these four memory strategies—voting by default party affiliation—is used only 

when all the previous steps fail. 

Second, five levels of ballot knowledge were created (see Table 2.1). First, there 

are three levels of how many candidates’ names were stored. The models could 

remember all candidates’ names, only the intended candidates’ names, or only the first 

70% of the intended candidates’ names. Then, two types of activations for intended 

candidates were assigned: roll-off activations and constant high-level activations. Models 

with roll-off activations are most familiar with the candidates for the first several races; 

then, as they progress down the ballot, their familiarity with candidates decreases. In the 

second condition—constant high-level activations—the models are highly familiar with 

all races to the same degree. Note that the various contents and activation levels of 
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memory were not chosen as an exhaustive search of all possible knowledge held by 

voters, but rather as an illustrative sample of common voter scenarios—some voters have 

certainly done their homework extensively, while others have likely only decided 

“important” races. 

Finally, two visual search strategies were used when looking for candidates: a 

serial search and a random search. The serial search strategy is a serial item-by-item 

search with a left-to-right, top-to-bottom pattern. With the random search strategy, the 

models conduct a random search. 

 

Ballot knowledge Candidates’ names  Activations for intended 

candidates 

FULL-

MEMORY 

All candidates Races 1 to 7: 0.7 

Races 8 to 14: 0.6 

Races 15 to 21: 0.5  

ALL-ROLLOFF Intended candidates only Races 1 to 7: 0.7 

Races 8 to 14: 0.6 

Races 15 to 21: 0.5 

ALL-PERFECT Intended candidates only All races: 0.8 

MOST-

ROLLOFF 

70% of intended candidates Races 1 to 3: 0.8 

Races 4 to 7: 0.7 

Races 8 to 11: 0.6 

Races 12 to 15: 0.5 

Race 16 to 21: Abstained  

MOST-

PERFECT 

70% of intended candidates Race 1 to 15: 0.8 

Race 16 to 21: Abstained 

Table 1.1 : Five levels of ballot knowledge. 
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1.3.2.3 Model Evaluation 

After developing 40 voting models that crossed four memory strategies with five 

levels of ballot knowledge and two visual search strategies, each voting model was tested 

multiple times for model evaluation or, in other words, error prediction. Then, the 

average across those runs was calculated. A 5% overall error rate generated by the model 

was expected, and, for the model predictions, the 95% confidence intervals were desired 

to be no wider than 2% in either direction. The table in Byrne (2013) shows that 457 

model runs are required; to be slightly more conservative, 500 runs per model were 

performed. 

For each model run, the ballot, as completed by the model, was compared with 

the “intent” initialized at the beginning of the run, and any discrepancies were noted as 

errors. Errors occurred across the entire voting process. The model might have retrieved 

an unintended name, recognized an unintended name, or failed to retrieve and then 

recognized an unintended name. For the model that simply made votes based on party 

affiliation, it may have retrieved an unintended party. The model may even have failed to 

retrieve and/or recognize an intended name, and then have voted by default party 

affiliation. Democratic was used as the default party affiliation for this model evaluation; 

however, intended candidates’ party affiliations did not always match the default party 

affiliation. The model occasionally also mis-clicked on the name above or below the 

intended name. 

Overall, the models generated an average 5% error rate across all voting models. 

Differences in error rates with visual strategies were not found, which means that using 

either a serial or a random scanning pattern did not affect the voting results. The main 
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story in these results is about memory strategy and ballot knowledge. Differences in 

voting errors based on the interaction between voting strategy and ballot knowledge was 

observed. 

Figure 1.7 presents five groups of bars that represent the error rates of the five 

levels of ballot knowledge. For each level of ballot knowledge, the percentages of the 

errors for the four memory strategies are displayed. For the FULL-MEMORY condition, 

the model generated 9% more errors than the other four levels of ballot knowledge. The 

model also generated more errors with roll-off activations for intended candidates. For 

the MOST-ROLLOFF and ALL-ROLLOFF conditions, the voting model was 2% more 

likely to make errors than with the MOST-PERFECT and ALL-PERFECT conditions. 

Additionally, for the four levels of ballot knowledge other than FULL-MEMORY, there 

were clearly fewer errors with the three-step “retrieve-recognize-party” memory strategy. 

To determine which process the model was using when it made an error, the error 

attributions for each vote were also recorded and analyzed. In Figure 1.7, each bar is 

partitioned into three colors, which represent the three processes the model could have 

been using when it made an error: retrieval, recognition, or party affiliation. For the 

FULL-MEMORY condition, most of the errors occurred in the recognition and/or 

retrieval processes. Within FULL-MEMORY, 7% more voting errors were generated 

with the “recognize-party” memory strategy. However, for the other four levels of ballot 

knowledge, differences in error attributions with memory strategies were not apparent; 

most of the errors were generated in the last steps—voting by party affiliation. 

 



 19 

 
Figure 1.7 : Interaction between memory strategy and ballot knowledge in voting error 
rates. The bars show voting errors, grouped by ballot knowledge levels (labeled at the 
top); each group shows the error rates for the four memory strategies. The colors of the 
bars indicate the processes the model was using when it made an error. Red, green, and 

blue represent the party affiliation, recognition, and retrieval, respectively. 

 

1.3.2.4 The Analysis of Error Predictions 

The error predictions reveal that extra ballot knowledge actually led to more 

errors, especially with the involvement of recognition. Common sense would suggest that 

a broader knowledge base should help to mitigate mistakes, but this is not always the 

case. Consider the recognition heuristic (Goldstein & Gigerenzer, 2002). The recognition 

heuristic describes a situation where, if one of two objects is recognized and the other is 

not, the recognized object is more likely to be selected. This strategy requires ignorance 

to make a choice—if people know everything or nothing about the options, it simply does 

not work. For example, for the question “which city has a larger population?” most 

people choose Dublin over Nenagh since they can recognize Dublin only. However, it is 
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harder for people to make a selection if the choices become San Diego and San Antonio, 

as they are more likely to recognize both of these cities. Similarly, in the voting task in 

this study, the models knew everything in the FULL-MEMORY condition, including 

both the intended and unintended candidates’ names. Thus, compared to the other four 

levels of ballot knowledge, the memory strategies did not work well with FULL-

MEMORY, and more errors occurred in the recognition processes. 

Because of the more frequent recognition errors, a greater impact of candidate 

name order can be expected with the FULL-MEMORY condition. Voters who cannot 

recall their intended candidate’s name must scan the list of names and see if they can 

recognize any, and their choices can be biased by the order in which candidates’ names 

appear on the ballot (Miller & Krosnick, 1998). Similarly, the model with “recognize-

party” memory strategy checks each candidate, sees if it recognizes the name, and if so, 

votes for it. Thus, since some voters do use top-to-bottom visual search, an advantage for 

the top candidate can be predicted. 

Another finding has to do with the interaction between task knowledge and recall 

performance. Schooler and Anderson (1997) suggested an association between the 

number of choices and recall performance, positing that the more choices we have, the 

more likely we are to make a recall error at each name. The same relationship can be 

observed in the models: the FULL-MEMORY condition contains both intended names 

and unintended names, and the models could either retrieve an intended name or an 

unintended name for each race in that condition; it was therefore more likely to make 

errors in the retrieval process since incorrect answers are available. However, with the 

other four levels of ballot knowledge, there are only intended names available in 
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memory. Wrong names were therefore less likely to be retrieved with these four levels of 

knowledge. 

The error predictions also indicate that the three-step “retrieve-recognize-party” 

memory strategy had a better performance than the two-step memory strategies. As can 

be seen in Figure 1.7, a large portion of the errors came from the last steps, voting by 

party affiliation, across five levels of knowledge. Comparing to the two-step strategies, 

the additional one step prevented errors that could be made in the last step, so the least 

amount of errors was generated with the three-step memory strategy. 

Note that the errors made in these models are not the result of poor ballot design. 

However, the interactions between strategy, knowledge, and ballot design should show 

how the visual layout of the ballot could influence error rates. Poor layouts may not 

induce all voters into error, but differentially affect those who use particular strategies. A 

minor difference in memory strategies, visual strategies, or ballot knowledge can often 

yield different results. For example, even if every voter applies an identical memory 

strategy and visual strategy, the voters who are familiar with all candidates’ names on the 

ballot are more likely to make recognition errors than the voters who are simply familiar 

with the intended candidates’ names. 

 The multi-strategy model represents the first use of ACT-R as an error prediction 

tool to diagnose whether there are particular combinations of strategies that lead to error. 

The results of the error prediction demonstrate that subtle interactions between strategy 

and knowledge can have substantial effects on error rates. It is therefore critical to 

consider multiple combinations of both when attempting to model errors, even in a task 

that appear as simple as voting. 
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1.4 Studying Voter Reading Patterns 

In addition to the modeling work for voting tasks, an eye-tracking study was 

conducted to study voting behaviors (Lindstedt et al., 2019). While a great deal of 

cognitive activity can be inferred from observations of standard behavioral traces (using 

measures of reaction and response latencies, accuracy, sequencing, etc.), eye-tracking 

techniques can help researchers more precisely examine the flow of information from the 

task into the cognitive system. As discussed earlier, both recognition and recall strategies 

are reasonable approaches to the voting task, as each seems sufficiently adapted to the 

task to succeed. In addition, even small differences in error rates between the two 

strategies can be impactful because of the large scale and tight margins of many 

elections. As a result, to better assess the extent to which these differentially effective 

strategies are actually employed while filling out a ballot, eye-tracking data was 

collected. 

The voting task in this study emulates the task designed for evaluation of the 

multi-strategy model mentioned above. As can be seen in Figure 1.8, it consists of 21 

races, and the layout is very similar to the VoteBox task (see Figure 1.5). Sixteen 

participants were instructed to select candidates, either using a guide to the fictitious 

candidates’ policies or a simple “slate” instructing them to vote for specific individuals. 
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Figure 1.8 : The VoteBox emulator task. It emulates the task designed for the evaluation 
of the multi-strategy model (see Figure 1.5). Three regions of interest (ROIs) for the eye 

tracking analysis are indicated by the dotted lines. 

 

The eye-tracking data was analyzed with a focus on three regions of interest 

(ROIs) that participants fixated on before selecting a candidate for each race: race title, 

candidates’ names, and party affiliation. If a participant looked at the race title as well as 

the candidates’ names or the party affiliation, a retrieval strategy was considered to have 

been used; if a participant did not look at the race title, but did look at the candidates’ 

names or party affiliation, a recognition strategy was presumed to have been used; if a 

participant had fixations only on the race title, or only on non-ROI areas of the screen, the 

memory strategy was considered as unclear. 

This study provides evidence that voters utilize both recall and recognition 

memory strategies when voting—overall, participants employed a retrieval-based 

strategy in 54.8% of trials, a recognition-based strategy in 33.3% of trials, and the 
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strategy was unclear in 11.9% of trials. The results of this study also suggest that some 

participants switched between the two strategies while filling out a ballot, although each 

participant appeared to have preferred one strategy over another (see Figure 1.9). 

 
Figure 1.9 : The proportion of total fixations (y-axis) for each of the three main ROIs 
(shade) for each trial (x-axis, first trial on left) completed by each participant. Each 

stacked bar represents the breakdown of a participant’s fixations of a single trial. Missing 
data or non-ROI fixations are in white. 
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It is also notable in Figure 1.9 that some participants fixated only on the party 

affiliations for several trials; some of the time participants were employing a strictly 

party-based memory strategy. Furthermore, this study provides a good support for the 

multi-strategy model; it proves that the idea that one can understand the error space by 

investigating only one strategy or predicting mean behavior is likely to miss critical 

combinations of factors that produce errors. 

1.5 Research Design 

The aforementioned eye-tracking study demonstrates the importance of covering 

the entire strategy space when developing cognitive models, but the voting task was 

conducted using a single-race-per-screen ballot. Paper ballots, with many races on a 

single display, are fundamentally different: voters must navigate both between and within 

races on one ballot. To eventually create an error prediction tool to detect the potential 

usability problems of paper ballots, it is necessary to understand how people vote using 

them. 

The current research consists of two studies. Study 1 is an eye-tracking study in 

which data were collected for a full-face ballot voting task. The collected eye-tracking 

data, such as the reading patterns of the participants, were analyzed to identify the ways 

in which voters seek information on a full-face ballot, and insights from the analysis 

results were integrated into the second study. 

Study 2 is a cognitive modeling study that expanded the strategy space covered by 

the multi-strategy model. First of all, a family of voting models that cover different 

navigation strategies was developed. Next, for model evaluation, the models were tested 

on a group of randomly generated full-face ballots, and the ways in which errors emerged 
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from the interaction of strategy and ballot design were thus identified. Finally, for model 

validation, the models were tested on a well-known poor ballot: the Wisconsin ballot (see 

Figure 1.2).
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Chapter 2 

Study 1 

The aim of Study 1 is to understand how voters interact with a full-face paper 

ballot. This study went a step beyond the eye-tracking study previously described in 

section 1.4: it sought not only to examine what information from the display a participant 

includes in his/her approach to completing the task, but also to identify how participants 

navigate through the races, party affiliations, and candidates together among the multiple 

races on one screen. By using an eye-tracking system and a custom-built ballot interface, 

the interactions of the participants with the ballot and the patterns among those 

interactions were recorded. 

2.1 Method 

2.1.1 Participants 

A total of 28 (14 male, 14 female) Rice University undergraduate students were 

recruited. The ages ranged from 18 to 23 years, with an average of 19.6. The participants 

were compensated with credit toward a course requirement. 

2.1.2 Material 

The voting task mimicked the ballot that one would typically see at a voting booth 

if using a paper ballot: 21 races and one proposition were listed in a single display (see 

Figure 2.1). This was constructed by taking the picture of a paper ballot, making it the 

background of an HTML page, and adding checkboxes next to the candidates using CSS 

to simulate bubbling-in a vote. 
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Figure 2.1 : The multi-race ballot interface that mimicked the ballot one would typically 
see at a voting booth. 21 races and one proposition question were listed. 
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To simulate the paper ballot experience, a 22-inch HP monitor was rotated 

vertically so that the ballot could fill the entire monitor without the need to scroll through 

it. A Gazepoint GP3 eye-tracker and Gazepoint Analysis UX Edition software were used 

to record the eye-tracking fixation data and fixation map videos. JSON was used to log 

interactions between the participants and the ballot: each JSON file contained 

information on the clicks, including what type of object was clicked (screen, voting for a 

candidate, unvoting for a candidate, submission) and its dissected components (race, 

political party, candidate name); what time the participant made each click; and the 

subject ID and date of the experiment. The JSON log also included the time the ballot 

was first opened, the time the ballot was submitted, and the duration of the entire voting 

process. 

2.1.3 Procedure 

At the beginning of the experimental session, the participants were given 

instructions on how to select candidates. They were randomly assigned either a voter 

guide that listed each candidate’s platform, thus allowing the participants to vote freely, 

or a voting slate instructing them to vote for specific individuals. The participants were 

then calibrated to the eye-tracker, with a minimum calibration score of six out of nine for 

both eyes. Then, the experimenter started the eye-tracking recording, and the participants 

were taken to the ballot interface, where they completed their voting. Once they were 

finished, the participants clicked the submit button, which prompted the download of the 

JSON log file, and the experimenter ended the recording. 
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2.2 Data Analysis 

For data analysis, both the participants’ reading patterns and their fixation data 

associated with three ROIs—race title, candidates’ names, and party affiliation—were 

examined, based on the JSON files, fixation data files, and fixation map videos. A 

challenge in the data analysis was that, for some participants, the fixation data was not 

properly aligned with their JSON logs. Adjustments to the fixation data therefore had to 

been made by carefully comparing the fixation data with the JSON logs and watching the 

fixation map videos. 

However, not everyone had their fixation data and fixation map video perfectly 

recorded. Three out of the 28 participants had missing fixation map videos, and, of the 

reminder, 12 had only partial fixation data recorded for various reasons—some wore 

eyeglasses, some had jerky eye movements, and some held the voting instructions in 

front of their eyes throughout the task, which blocked the eye-tracker. As a result, 15 

participants were excluded from the analysis of the ROIs. 

2.3 Results 

According to the fixation data and/or the JSON files, 20 participants voted with a 

strict serial top to bottom left to right pattern—that is, they started in the top-left corner 

and voted from the top to the bottom of that column, and then went over to the next 

column and went all the way to the bottom, repeating until they finished the voting task. 

Seven participants made minute adjustments but still followed the overall top to bottom 

left to right pattern most of the time. For example, one participant started voting with the 

top to bottom left to right pattern, read—but skipped—the race “Lieutenant Governor” 

(see Figure 2.1), then read and voted the two races below it, then came back and voted 
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the “Lieutenant Governor”, and then finished the voting task with the top to bottom left to 

right pattern. As another example, there were five participants who jumped to the 

proposition race—located in the bottom-right corner—in the middle of their top to bottom 

left to right voting processes, voted for it, and then went back and picked up where they 

left off to finish the task. Most interestingly, given that the voting instructions provided 

were in a top to bottom left to right sequence, there was one participant who used a 

“snake” reading pattern (see Figure 2.2); it can also be noticed that the County Treasurer 

race was out by this participant. 

Regarding the reading pattern, it was also found that nine participants skimmed 

the ballot and checked it before they hit the submit button to finish the task. In addition, 

four participants read through the instructions at the beginning of voting. These two 

numbers should be considered with caution due to the aforementioned fixation recording 

issues and the lack of corresponding JSON logs as backup. 
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Figure 2.2 : One of the 28 participants used a “snake” reading pattern (indicated by red 
arrows), given that the voting instructions provided were in a top to bottom left to right 

sequence. “County Treasurer” was out by this participant. 
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Figure 2.3 shows summarized ROI proportions for 13 participants for all 22 races. 

Since a few participants had interesting interactions with the proposition question, the 

ROI use for the proposition question was studied independently. As can be seen in this 

figure, the participants interacted with the ballot quite differently—some showed great 

interest in the proposition question (s02, s09, s12, s23), and some participants rarely 

checked party affiliations (s11, s15, s20). 

 
Figure 2.3 : ROI proportions for 13 participants for all 22 races. Participants showed 

different interest on three ROI areas: race title, name, party affiliation. The ROIs of the 
proposition question (race 22) was independently displayed. 
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To provide more information on the ROIs, Figure 2.4 displays the breakdown of 

each participant’s ROI use for each race. The dynamic changes in the ROI proportions 

across the races can be observed—some participants appeared to use a more consistent 

set of ROIs (e.g., s11, s23), while others seemed to have different ROIs from race to race 

(e.g., s02, s03). 

 
Figure 2.4 : ROI proportions (y-axis) for 22 races (x-axis, first trial on left) completed by 

13 participants. Some participants favored a more consistent set of ROIs, while others 
had different ROIs from race to race. Missing data or non-ROI fixations are not presented 

in this figure. 
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2.4 Discussion 

The results of Study 1 suggest two primary findings. First, top to bottom left to 

right was the most commonly used pattern for navigating between the races on the paper 

ballot. Second, the participants appear to have different reading patterns and switch 

memory strategies between races, which reinforces the importance of covering and 

modeling various voting strategies in error prediction. As can be seen in Figure 2.4, some 

participants (e.g., s03, s07, s20) read the race title in some races but not in others, 

implying that they used a recognition-based strategy occasionally, while for some 

participants (e.g., s04, s11), the race titles were consistently fixated, implying that a 

retrieval-based strategy was used throughout the task. 

It is also noticeable that one of the 28 participants had the “snake” reading pattern 

(see Figure 2.2) and skipped one race. This finding demonstrates that at least a portion of 

voters may use non-traditional reading patterns in real elections and these patterns can be 

error-inducing. It highlights the importance of studying voter error using a thorough 

exploration of the strategy space to capture a wide array of errors. 

Furthermore, although top to bottom left to right was observed as the most 

common reading pattern in this study, it is doubtful that the orderings of the races that 

were listed in the voting instructions might have influenced the reading patterns of the 

participants. Therefore, to investigate whether there is an effect of the race order, a future 

study will mix the race orders on the voting slates and voter guides, and then replicate the 

eye-tracking experiment.
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Chapter 3 

Study 2 

The primary goal of Study 2 was to expand the strategy space covered by the 

multi-strategy model and to develop various plausible strategies for voting on full-face 

paper ballots. Four voting strategies, two visual search strategies, and five ballot 

knowledge levels were inherited from the multi-strategy model. Even though 40 

combinations of strategies and ballot knowledge may seem a lot, they are not sufficient to 

encompass voters’ behaviors with a full-face paper ballot. A full-face ballot, which 

contains many races on a single display, usually implies a larger number of plausible 

voting strategies and more sophisticated modeling work, as the model also needs to 

navigate from race to race. Several modeling issues therefore need to be addressed. 

First, since more than one race is contained in a single display—and so the model 

also needs to navigate from race to race—macronavigation strategies were also 

considered and modeled in this study, in addition to the existing micronavigation 

strategies covered in the multi-strategy model. Macronavigation represents the process of 

moving from one race to the next, and micronavigation is the process of choosing the 

intended candidate to vote for within each race. Since the findings of Study 1 suggest that 

voters have different reading patterns throughout the voting task, two types of 

macronavigation pattern were modeled in this study. 

Second, races are usually small and tightly arranged on a paper ballot. When there 

is significantly more information in a confined space, it is reasonable to believe that 

voters may also consider a race or even a column as a supergroup and consider race titles, 

candidates’ names, and party affiliations as subgroups. It is therefore more complex for 
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the model to identify race titles, candidates’ names, and party affiliations; to distinguish 

different races; and to navigate from one race to another. In this study, the visual 

grouping algorithm was used (Lindstedt & Byrne, 2018), but, because its ability to group 

visual items is somewhat limited—in that the algorithm cannot identify and store 

supergroups nor link supergroups to the corresponding subgroups—an alternative 

solution had to be figured out to worked around this. 

Besides developing a whole family of models, another goal of this study was to 

understand how errors emerge from the interaction of strategy and ballot design, given 

that tens of thousands of ballot designs are deployed for each national election. To 

achieve this goal, a series of randomly generated ballots was used to test the expanded 

multi-strategy model developed in this study. 

3.1 Method 

3.1.1 Ballot Design 

The first step of the study was to create ACT-R compatible full-face ballots as the 

voting tasks. The voting tasks for the model consist of a virtual screen populated with 

several columns of races. The design of the ballots is clear and simple, with each race in 

its own clear visual group: each race has a title, a list of candidates and their associated 

parties, and a list of buttons that the model can click to vote for a candidate. In addition, 

on these ballots, the races in each column are horizontally aligned, as might be expected. 

As mentioned earlier, the visual grouping algorithm can simulate how most voters 

group things within a race, but, for a paper ballot voting task, the groups generated by the 

grouping algorithm might only be considered as subgroups. To make the model 
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compatible with the visual grouping algorithm and thus able to navigate between races, 

two types of ballot design were developed. 

For the first type of ballot, the race headers were colored red, the candidates were 

colored purple, and the parties were colored blue (see Figure 3.1). The coloring allows 

the model to make visual location requests, like “the closest red text in the column to the 

right” (when finding the closest race) or “the closest purple text to my current position” 

(when finding the candidate group of the currently attended race). Since humans can 

normally reliably differentiate between race headers, candidates, and parties by using the 

visual characteristics of the ballot, it is believed that coloring the ballot does not give the 

model an unfair advantage. However, an alternative method was also explored to work 

around this problem. 

 

Figure 3.1 : A full-face ballot with colored texts. The coloring allows the model to make 
visual location requests to navigate between and within races. 
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The alternative ballot was built on the basis of the first type of ballot: besides the 

coloring cues used in the first method, an image background was added for each race (see 

Figure 3.2), and thus every subgroup layered on that image would be associated to the 

same race. The background allows the model to make visual location requests, like “the 

closest image in the column to the right” (when finding the closest race) or “the closest 

red text within the boundaries of the current image” (when finding the race group of the 

current race). 

 

Figure 3.2 : A full-face ballot with image backgrounds. Race title, candidate names, and 
party affiliations that layered on a single image would be associated with each other. The 
image background allows the model to make visual location requests to navigate between 

races. 
  

Since, on the first type of ballot, the model uses race titles to navigate between 

races and the race titles are at the top of each race, this type of ballot is described as top-

based, and the model that uses race titles to navigate is also described as top-based. On 
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the second type of ballot, the model uses images to navigate between races: the model 

first finds the center of the current image/race and then navigates to the center of another 

image/race for which it wants to vote. This type of ballot is therefore called center-based, 

and the model that uses images to navigate between races is also called center-based. 

Furthermore, in order to understand the interaction between voting strategy and 

ballot design, both types of ballot were not static. Instead of consisting of a manually-

positioned set of races and candidates, the ballots can be dynamically generated 

throughout the simulation processes. As each ballot was generated, each race was 

randomly selected to have several candidates and then placed a set distance below the last 

race. Also, three layout variables were allowed to vary: the vertical space between the 

races, the vertical space between the race header and the candidates, and the vertical 

space between the candidates, which yields 132 possible combinations of spacing 

variables (see Table 3.1). The ranges of the variables that were chosen resulted in ballots 

that the model could still realistically parse but were nevertheless visually distinct. 

Variable range (pixels) Range (pixels) 

Space between races  5–15 

Space between header and candidates  20–22 

Space between candidates 15–18 

Table 3.1 : Three ballot layout variables. 
 

3.1.2 Strategy Space 

The strategy space covers a total of 160 voting models, and each model includes a 

macronavigation strategy, a level of ballot knowledge, and a micronavigation strategy. 
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Multiple plausible alternatives were used for each component: four macronavigation 

strategies, eight micronavigation strategies, and five levels of ballot knowledge. 

3.1.2.1 Macronavigation Strategy 

The macronavigation strategy indicates the strategy for navigating between races. 

There are many plausible macronavigation strategies that voters could use—some may 

read in a serial, race-by-race pattern from one corner to its diagonal opposite; some may 

prefer to randomly pick a race to vote; some may scan globally and read all the bold, 

large, or colored headers first; and some may be unable to retrieve all the candidates they 

intend to vote for at one time and may therefore have to read the ballot a second time to 

fill out what they left incomplete. 

Four macronavigation strategies were developed in this study: top to bottom left to 

right and left to right top to bottom patterns, interacting with top-based and center-based 

strategies. With the top to bottom left to right strategy, the model starts from the top-left 

corner and finishes the columns one by one, from left to right. Similarly, with the left to 

right top to bottom strategy, the model starts with the upper-leftmost race on the ballot, 

then proceeds to the right, navigating to the closest race to the last race it voted in the 

next column over and repeating until it votes on a race in the last column. It then goes 

back to the beginning of the row, finds the next race down in the left column, and repeats 

voting from left to right. The model continues until it runs out of new races in the left 

column. 

3.1.2.2 Micronavigation Strategy 

The micronavigation strategy represents the strategy for choosing a candidate to 

vote for within each race. It covers the interactions between four memory strategies 

(retrieve-party, recognize-party, retrieve-recognize-party, party only) and two visual 
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search strategies (serial, random) for casting a vote within each race. The four memory 

strategies and two visual search strategies were inherited from the multi-strategy model. 

3.1.2.3 Ballot Knowledge 

Ballot knowledge defines voters’ level of knowledge of the races and candidates. 

Five levels of ballot knowledge were inherited from the multi-strategy model (see Table 

1.1). 

3.2 Model Evaluation 

 As the micronavigation strategies and ballot knowledge remain the same as in the 

multi-strategy model, the research focus here was on the macronavigation strategies and 

understanding how voting errors changed as a function of the ballot layout. To allow the 

model to vote, ALL-PERFECT was selected for the ballot knowledge and random, 

recognize-party was chosen for the micronavigation strategy throughout the evaluation 

process. 

3.2.1 Top to Bottom Left to Right Macronavigation Strategy 

 For each of the 132 combinations of spacing variables (see Table 3.1), the model 

was tested on 20 randomly generated center-based ballots and 20 randomly generated 

top-based ballots. As each ballot was generated, each race was randomly selected to have 

between one and seven candidates. For each run, the exact race positions, the race order 

on the ballot, and the order in which the model voted on the races (including any races 

the model missed) were recorded. Since the ballot layouts are simple and clear and the 

top to bottom left to right strategy is the most obvious method of macronavigation, the 

model did not miss any race throughout the voting processes. 
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3.2.2 Left to Right Top to Bottom Macronavigation Strategy 

3.2.2.1 Method 

For each of the 132 possible combinations of spacing variables, the model was 

tested on 50 randomly generated top-based ballots (Engels et al., 2020). As each ballot 

was generated, each race was randomly selected to have between one and four 

candidates. Thus, the model was run on 6,600 ballots for a total of 158,338 individual 

races. Similarly, the exact race positions, the race order on the ballot, and the order in 

which the model voted on the races were recorded for each model run. 

3.2.2.2 Results 

An error happens when the model skips a race. As introduced earlier, the races in 

each column are horizontally aligned on the ballots. However, when the race lengths are 

allowed to vary, the races in different columns are not vertically aligned, as the 

generation process always placed each race a set distance below the last race. Since the 

macronavigation strategy proceeded from left to right, in cases where the races were 

vertically misaligned, the model could make errors. Note that when the ballot is a perfect 

grid where all races are vertically aligned, the model does not make errors. It is therefore 

the interaction of this strategy with the design of the ballot that results in errors. 

Figure 3.3 shows an example of the model missing a race on a typical top-based 

ballot. As can be seen in this figure, when the model reaches the third race down in the 

left column (“United States Representative District 7”) it votes on that race and then 

proceeds along the row, selecting and voting on the closest race and repeating until it 

reaches the last column. The model then returns to the race at the beginning of the row 

and proceeds to the first race on the next row down (“Governor”). Here is where it makes 

its mistake: because the “Railroad Commissioner” race is the closest race to “Governor,” 
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the model votes on “Railroad Commissioner” for its second race in the row and so skips 

“Commissioner of Agriculture.” It never returns to vote on this race. 

 

Figure 3.3 : The top-based model skips “Commissioner of Agriculture.” The green 
arrows mark a left to right top to bottom macronavigation voting pattern.  

 

Overall, the model’s global error rate is around 13.04%, meaning that, on average, 

given a random race on a top-based ballot, there is a 13.04% chance that the model will 

not vote on it. This rate is certainly much higher than any experimental rate in human 

voters, but, as this strategy is nonstandard, this is to be expected. Of course, most people 

do not make anywhere near these many errors, but average error rates in the wild likely 

stem from outliers, such as this strategy. 

3.2.2.2.1 Effects of Race Location 

 The first thing examined was the relationship of race location on the ballot to 

model error. As can be seen in Figure 3.4, there is a general trend of increasing errors 
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across columns. In other words, races in columns that are further to the right are more 

likely to be skipped. 

 
Figure 3.4 : Average voting error rate increased across races in the left, middle, and right 

columns across all ballot runs. 
 

In fact, since the exact y coordinate and column for every race on every ballot 

were recorded, it is possible to generate a heatmap of error rates by race position on the 

ballot (see Figure 3.5). Each bin collates the percent error of the model for races within 

10 vertical pixels, where the y position of a race is its header. 
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Figure 3.5 : Heatmap of the model’s average voting error according to races’ columns 

and y-axis positions. 
 

Of interest are the places in Figure 3.5 where errors are likely. One immediately 

obvious place is the bottom-right corner, where average percent error approaches 100. 

The model almost always misses races here. To make sense of this result, it is observed 

that the only way in which a race can have its start in one of those bottom-right boxes is 

if it is very short. It makes sense that, for short races nestled in the bottom corner, people 

will frequently get to the last race in the left column and vote across that row not low 

enough to reach the bottom corner races. 

However, other than this, errors are more or less uniformly distributed across the 

ballot. This result hints at the strength of the model: errors occur seemingly randomly 

across the ballot because they are emerging from the specific structure of individual 

random ballots. 
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3.2.2.2.2 Effects of Ballot Structure 

Besides the race location, how specific elements of ballot structure influence the 

model error was also examined. First, differences in error rates with different amounts of 

vertical space between the end of each race and the beginning of the next were identified: 

voting error increased as the space between races decreased (see Figure 3.6). This result 

validates the intuition that the more cluttered a ballot is, the more likely the model is to 

miss a race. 

 
Figure 3.6 : Voting error increased as the space between races decreased. Each black dot 
is the average percent error across all ballots with a specific race spacing. The blue line is 
the linear regression for the trend, the red line is the average error of the model, and the 

shading represents the 95% confidence intervals for the line. 
 

Recall that vertical space is just one of the spacing variables that was 

manipulated. Each specific vertical spacing value therefore includes many observations 

from ballots built from combinations of the other spacing variables. While these other 

spacing variables were also examined, no significant effect of them on the model’s error 

rate was found. 
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The relationship between the length of a race and the chance it would be skipped 

was also been investigated and a similar result was found: as the length of a race 

decreased, the model’s chance of skipping it (its error rate for races of that length) 

increased (see Figure 3.7). Of note, single-candidate races are most likely to be missed, 

but of course skipping such a race will not change the outcome of an election, since 

unopposed candidates are guaranteed to win. 

 
Figure 3.7 : Average error rate increased as the length of a race decreased. 
 

Finally, how the model’s error rate varied as a function of the vertical distance 

from a given race to the nearest race to it in the previous column was studied. Figure 3.8 

shows a stacked bar plot of races missed and races voted on according to this variable. 

This graph shows two things: first, that the chance a simulated voter misses a race 

increases as the closest distance to the last race increases, and second, that the number of 

races that are far from any prior race decreases as the distance increases. The reason that 

the distribution is non uniform, with peaks in the 0 bin, 15–20 bin, 30–35 bin, and 45–50 
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bin, is a result of how the ballots were generated. The candidate spacing varied from 15 

to 18 pixels, and it was frequently the case that the closest race in the last column was an 

integer multiple of candidate space away (see Figure 3.3). 

 
Figure 3.8 : Stacked bar plot of the number of races voted on and not voted on across all 
model runs, plotted according to the vertical distance between the race and the closest 

race in the previous column (bins of 5 pixels). 
 

3.2.2.3 Replication of the Findings 

For each of the 132 combinations of spacing variables, the center-based model 

was also tested using 20 randomly generated ballots. As each ballot was generated, each 

race was randomly selected to have between one and seven candidates. The effects of 

both race location and effects of ballot structure were replicated (see Figure 3.9, Figure 

3.10, Figure 3.11, Figure 3.12, Figure 3.13), but with slightly higher global error rates: on 

average, given a random race on a center-based ballot, there is a 16.58% chance that the 

model will miss the vote, compared to the 13.04% chance on a top-based ballot. 
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Figure 3.9 : Average voting errors across races in the left, middle, and right columns 

across all ballot runs. Replicated by center-based model. 

 
Figure 3.10 : Heatmap of the model’s average voting error according to races’ columns 

and y-axis positions. Replicated by center-based model. 



 51 

 
Figure 3.11 : Voting error increased as the space between races decreased. Replicated by 

center-based model. 

 

 
 
Figure 3.12 : Average error rate increased as the length of a race decreased. Replicated by 

center-based model. 
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Figure 3.13 : Stacked bar plot of the number of races voted on and not voted on across all 

model runs. Replicated by center-based model. 
 

The reason for the higher error rates is that the model uses different reference 

points to navigate between races on the two types of ballot: the top-based model uses 

race titles to find the locations of the next race to vote for, but, the center-based model 

navigates between races according to the center of images—the race titles are closer to 

the tops of the races, so a few missing races can be prevented. As an example, in Figure 

3.14, the center-based model missed the “Attorney General” race, because the center of 

“Comptroller of Public Accounts” race was closer to the center of the “United States 

Senator” race. In contrast, this error could be avoided by the top-based model because the 

title “Attorney General” might be closer to the race title “United States Senator.” 
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Figure 3.14 : The center-based model voting using the left to right top to bottom 
macronavigation strategy. The model skips “Attorney General.” 

 

3.2.3 Conclusion 

Races were more likely to be missed if they were smaller, out of alignment with 

the races in other columns, or more cramped overall. These are all characteristics of bad 

ballots that the model detected organically. The detection behavior emerged out of the 

design of the strategy; it was not hardcoded. The fact that the model’s error behavior was 

unplanned and emergent is in line with the long-term plan of building models that can 

produce novel errors on novel ballots. 

 Indeed, it can be seen that the average error for this strategy is far higher than the 

average error for all voters, even assuming, as the model did, that once a voter finds a 

race, they would successfully vote on it (choosing a perfect micronavigation strategy, in 
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the parlance of the model). Most real voters probably use a more successful 

macronavigation strategy. However, if even a subset of voters uses this strategy, or one 

like it, then it is necessary to account for them in the model, as a subset of voters can still 

have a deciding impact on a close race. 

3.3 Model Validation 

3.3.1 Method 

 For model validation, the model was tested on an infamous bad ballot: the ballot 

used in Wisconsin in 2002 (see Figure 1.2). Many voters made errors on this ballot 

because they considered two sections of the gubernatorial race as two different races. 

Since the model makes use of the visual grouping algorithm, it is important to ensure that 

the model has the ability to produce the “Wisconsin error.” 

 First, a simplified Wisconsin ballot was developed as the voting task (see Figure 

3.15): the gubernatorial race on the Wisconsin ballot, which yielded overvotes, was 

reproduced and placed in the same location; for the rest of the ballot, races developed for 

previous voting tasks were inserted. 
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Figure 3.15 : The Wisconsin error was replicated on the simplified Wisconsin ballot. The 
gubernatorial race was split across two columns. The model identified the two sections as 

two races and voted in both sections. 
 

The next issue to address is the number of Monte Carlo replications. The overall 

error rate generated by the model was expected to be around 5% and the 95% confidence 

intervals for the model predictions to be no wider than 5% in either direction. The table in 

Byrne (2013) shows this requires 109 model runs; 200 runs per model were therefore 

performed to be slightly more conservative. 

3.3.2 Results 

A total of 80 voting models, created from the interactions of two center-based 

macronavigation strategies, five levels of ballot knowledge, and eight micronavigation 

strategies, were tested on the ballot. The Wisconsin error was reproduced successfully: 

overall, the model generated an average 5.80% Wisconsin error rate across all voting 
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models, which means that the model had a 5.80% chance of making a vote for both 

sections of the gubernatorial race. 

Differences in error rates between macronavigation strategies and between visual 

search strategies were not found, which means that the choice between a left to right top 

to bottom or a top to bottom left to right strategy to navigate between races did not affect 

the results, nor did the choice between a serial or a random scanning pattern to navigate 

within races. However, differences in error rates were observed for memory strategies. 

As can be seen in Figure 3.16, there was clearly an effect of memory strategies on the 

Wisconsin error: about 10% more such errors were generated with the “recognize-party” 

strategy, but for the other three memory strategies, a difference in the error rates was not 

apparent. Note that the errors only occurred in the FULL-MEMORY condition; since, 

with FULL-MEMORY, the models could remember all candidates’ names, it is suspected 

that the model could thus be capable of voting a second time in the second section of the 

gubernatorial race. 
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Figure 3.16 : Average Wisconsin error rate across four memory strategies with FULL-
MEMORY. 

 

3.4 Discussion 

 In Study 2, the research focus is on developing macronavigation strategies and 

understanding the interaction of macronavigation strategy and ballot design. The insight 

from Study 1 was successfully addressed and integrated: in addition to the traditional top 

to bottom left to right strategy, the model also makes use of a non-standard left to right 

top to bottom macronavigation strategy. Notably, using a non-standard macronavigation 

strategy amplified the ability to detect bad ballots. For instance, a strategy moving in the 
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same direction as that in which the races were originally placed might not mind if the 

races were very close together, but any other strategy would. Ballot designers need to 

cater to less common strategies, so an ability to detect when ballots will cause systematic 

errors in voters using these strategies is crucial. 

Through the model evaluation process, the effects of race locations and effects of 

ballot structures were identified. While some of the findings may seem obvious, they 

must partly be viewed in the light of the wider project. The model was able to vote on a 

wide array of ballots that looked visually different and to successfully make consistent 

errors. More than just characterizing the type of ballots and races that are more disposed 

to be skipped by a specific voter, these findings confirm the feasibility of attempting to 

eventually predict errors in novel ballots. 

Furthermore, the model makes an interesting additional prediction: as it is more 

likely to miss races in the center and right columns and is more likely to miss smaller 

races, the model predicts that average voter error should be higher on down-ballot races 

in the real world (as some voters may use a similar left to right strategy). This skew is 

likely to be more severe in years with a presidential race, since there are often many 

candidates running for president, meaning that the first race in the left column would be 

very long, thus making it more likely that other columns’ races will not be aligned. 

Of course, the model has yet to be perfected, and there is still work to be done. 

First, the simulation is not the same as an actual paper ballot—filling out a ballot with a 

pencil is not the same as clicking a bubble with a mouse, and how to model the click 

actions and mouse noise must be carefully considered and implemented. Also, the voting 

tasks do not quite look like real full-face paper ballot—elements like instructions and the 

lines separating the races need to be added to give the voting tasks a more realistic look. 
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Second, although the model has successfully reproduced the Wisconsin error, it 

cannot yet deal with instructions, which means that the model cannot make errors that 

induced by the interactions of strategies and instructions (e.g., the ballot used in Broward 

County, Florida in 2018; see Figure 1.3). The model should be further updated so that its 

validity can be fully guaranteed. 

Third, one must remember that the goal of this study is to simulate and model 

how people vote on paper ballots, and there are still voter behaviors not covered by the 

model. For example, some voters may fill in the wrong bubble and change it later; some 

may use other macronavigation strategies, such as the “snake” pattern (see Figure 2.2); 

and some may glance back over the ballot at their filled bubbles to check they filled 

everything out. All of these processes may introduce new sources of error. Therefore, it is 

necessary to keep exploring the strategy space and to model more voting strategies. 
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Chapter 4 

Conclusion and Future Directions 

This thesis represents an important step toward the end goal of constructing an 

automated error prediction tool to identify bad ballots: the model used a total of 160 

different voting strategies constructed from differing memory and navigational strategy 

selections. More importantly, it represents the first use of ACT-R as an error prediction 

tool to diagnose whether there are particular combinations of strategies and ballot layouts 

that lead to voting errors. 

Study 2 confirms the feasibility of predicting errors in paper ballots and the 

validity of the model—how ballot layout and the visual task strategy can interact to 

produce voting errors was systematically studied. The results can even be used to 

generate applied advice for a hypothetical election official who must build a ballot with 

races of varying length. Such an official should strive to line up race headers as much as 

possible, sacrificing races per page by leaving blank space so that races can be aligned 

(this would help increase accuracy not only with the specific left to the right top to 

bottom macronavigation strategy tested in this study, but indeed any strategy that goes 

left to right). Moreover, the official should try not to squeeze races into the bottom right 

corner, and in general try to keep the ballot uncluttered by putting as much space between 

races as possible. Figure 4.1 shows an example of bad ballot design. As can be seen on 

this ballot, races are vertically misaligned, with varying race lengths and limited spaces 

between races. It is therefore harder to distinguish different races comparing with voting 

on a properly designed ballot that prevent errors (see Figure 4.2). The official might even 

consider making the space within races more cramped to make the delineations between 
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races clearer, although this will introduce the possibility for a voter filling in the wrong 

bubble or missing the candidate they want to vote for. Future models will be developed to 

predict these errors. 

 
Figure 4.1 : A poorly designed ballot. 

 
Figure 4.2 : A simple and clear ballot layout. 
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One of the next steps will be to completely map the space of macronavigation 

strategies by running eye-tracking experiments on human subjects voting on different 

ballot layouts and by studying and integrating the insights from the analysis results. To 

implement these new strategies, it is also inevitable that capabilities of ACT-R itself will 

be expanded by extending the current visual grouping module to group objects in a 

hierarchy and by extending the options that models must visually navigate. 

New sub-strategies for other parts of the model are also planned, including new 

ways for the model to encode the candidate, party, and race groups and to find and click 

the bubble corresponding to a candidate. Again, a group of simulations will need to be 

conducted to determine every behavior variant. A robust automatic ballot usability 

evaluation system that can dynamically build any voter from the voting strategy space 

will thereby be developed, and a wider variety of errors will be capture and prevented. 

Most importantly, more diverse ballots can be tested before deployment.  
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