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The Next Generation Air Transportation System (NextGen) seeks to reduce gridlock at airports by, among 
other things, creating a more efficient surface taxi management system. Addressing this situation creates a 
difficult evaluation problem; how can new scheduling methods be tested? Present methods generally 
involve either expensive human-in-the-loop experiments or computer simulations that do not adequately 
represent the human component of system performance. We have developed an ACT-R model of 
commercial jetliner taxiing with the ultimate goal of aiding in both of these efforts. The X-Plane 
commercial flight simulation package provides an environment in which the model can act. That 
environment is populated with aircraft driven by recordings taken of real aircraft at Dallas-Fort Worth 
airport, which contain the actual positions of all aircraft on the taxi surface for a given time slice. This also 
provides us with a rich source of data for model validation, as the model can “replace” one actual aircraft, 
allowing comparisons between model-generated and pilot-generated trajectories. 
 

INTRODUCTION 
 

As the volume of commercial air traffic has 
increased, large airports have strained to accommodate 
increased levels of congestion. One reason for this difficulty 
arises from the inefficiency of surface traffic management. 
The task of optimizing the timing and route of each plane from 
the gate to the runway is computationally difficult, and ground 
controllers do not have the proper resources to do such 
optimization. This task becomes even more complex as the 
amount of surface traffic increases, which leads to delays that 
cost airlines time, fuel, and money (FAA, 2010) as well as 
inconvenience (or worse) for passengers. 

In recent years, this task has been made easier with 
the introduction of Airport Surface Detection Equipment – 
Model X (ASDE-X). ASDE-X is a key component of 
NextGen (FAA, 2010), which aims to reduce gridlock at 
airports around the country. ASDE-X synthesizes several 
positioning systems, such as Automatic Dependent 
Surveillance-Broadcast (ADS-B), surface movement radar, 
and multilateration sensors into a more robust set of 
positioning data. Each of these techniques uses a different 
technology to locate aircraft on the taxiways. For instance, 
ADS-B relies on satellite navigation systems (such as GPS), 
where as multilateration determines an aircraft’s position by 
measuring the time taken for a signal to travel from a plane to 
multiple receivers within the airport. ASDE-X is able to weigh 
the strengths and weaknesses of each in order to provide 
controllers with precise, real-time positions of all nearby 
planes. This helps ground controllers perform their job more 
efficiently. 

With advancements in surface management 
technology, researchers have began experimenting with 
computer algorithms that calculate the optimal sequencing and 
routing of planes as they move about the taxi surface (Malik, 
Gupta, & Jung, 2010). However, the current methods for 
testing these algorithms are limited in several ways. 

One common method is to employ human-in-the-
loop (HITL) simulations. These simulations involve people 
coming into a lab in order to pilot flight simulators while 

ground controllers provide them with instructions. This 
method of testing is useful because the capabilities of real 
pilots play an important role in determining the validity of the 
algorithm. For instance, an algorithm may predict high 
efficiency by closely spacing planes together, but human pilots 
may not be able to safely implement these procedures. In 
addition, the reaction times of pilots can add latency to the 
system that is not apparent otherwise. While HITL testing can 
provide realistic results, it suffers from two major drawbacks. 
Firstly, it can be expensive, totaling thousands of man-hours in 
order to test new changes. Secondly, HITL simulations do not 
always account for behavior on a large scale. For instance, if 
one wanted to predict the rate of runway incursions that arise 
from several nearby airports over the span of a few months, 
HITL testing is simply not feasible. 

Another common method for testing these algorithms 
is to use computer simulations, such as the Surface Operations 
Simulator and Scheduler (SOS2; Wood, Kistler, Rathinam, & 
Jung, 2009). Computer simulations overcome the major 
concerns of HITL testing: they are both fast and comparatively 
inexpensive. However, current computer simulations have 
their own limitations. SOS2 does not dynamically simulate 
human pilot behavior. Responses to ground controllers are 
predetermined, meaning that the planes in these simulations 
always react to air traffic controllers without error and in zero 
time. Furthermore, off-nominal situations are neither detected 
nor corrected  in these simulations due to the lack of 
consideration for pilot cognition. While such omissions are not 
uncommon in the early stages of research on a problem, they 
expose a serious gap in our ability to accurately predict the 
outcome of changes to the surface management system. 

In this paper, we present a computational cognitive 
model of pilot taxiing. A cognitive model has the benefits of 
being both fast and inexpensive, while also integrating key 
components of human cognition and behavior that may affect 
the simulations, such as pilot errors and response times. 
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ACT-R 
 
 We constructed our cognitive model using ACT-R 
6.0 (Anderson, 2007), a computational cognitive architecture 
that is capable of simulating human cognition through an 
interaction of lower-level psychological processes, such as 
memory retrieval and visual attention. The mechanisms that 
underlie these lower-level processes have been well vetted in 
the psychological literature to ensure predictive accuracy. 
ACT-R is an ideal candidate for modeling pilot taxiing 
behavior for several reasons. Firstly, it has proven capable of 
modeling complex tasks in both aviation (Byrne & Kirlik, 
2005) and driving (Salvucci, 2006) domains. Secondly, ACT-
R is capable of interacting with an external environment in 
real-time, which allows us to watch and evaluate the model 
performance in the same way we might evaluate human 
performance. 
 ACT-R models are created by specifying the domain-
specific procedural and declarative knowledge of the human 
being modeled. This information is derived from subject 
matter experts as well as airline procedural documentation. 
Propositional symbols (or chunks, in ACT-R parlance) are 
used to denote items in declarative memory, as well as objects 
in the environment. Procedural memory is represented in the 
form of production rules. Production rules are IF-THEN rules 
that require specific conditions to be met (IF) in order to 
execute a set of actions (THEN). For instance, one production 
rule might state, “IF there is a hold sign present, and the 
speedometer indicates a speed greater than 0, and the brake is 
not being pressed THEN step on the brake.” The behavior 
resulting from a production rule can take a wide variety of 
forms, including changes to internal mental states, movements 
of visual attention, or motor movements. The end result of a 
run of an ACT-R model is a time stamped list of actions 
performed by the model called the trace.  
 

X-PLANE 
 

 X-Plane 9, a commercial flight simulator, acts as the 
external environment for our model. Information presented in 
X-Plane, such as taxiway signage and cockpit displays, is 
encoded as chunks in the model’s visual field. These chunks 
can determine which production rule should fire at any given 
time. In turn, a production rule may produce observable 
behavior within X-Plane. For instance, if a production rule 
determines that the throttle should be increased, the throttle in 
X-Plane is actually increased. Thus, the ACT-R model and X-
Plane are dynamically linked. 

X-Plane handles the physics necessary to make our 
simulation realistic. For instance, when our model decides to 
increase the thrust of the plane, X-Plane determines the 
acceleration and velocity depending on the type of plane the 
model is currently piloting. In addition, X-Plane provides 
detailed maps of airports worldwide, including signage on the 
taxiways. This enables us to simulate real clearances at real 
airports, which produces concrete predictions about how well 
these systems work at any particular airport. 
 The model communicates with X-Plane using a plug-
in infrastructure, which allows our model to read state 

variables, such as position and velocity. However, since ACT-
R does not contain a machine vision component, visual 
aspects that are crucial to the model’s performance must be 
redrawn on a proxy interface in a manner that our model can 
“see.” This proxy window takes the form of a Lisp window, 
with visual objects marked up such that they can be encoded 
by ACT-R’s visual system. 
 The resulting system runs on two machines, a PC 
running X-Plane and a Macintosh running Lisp and 
maintaining both the virtual cockpit and ACT-R. The system 
is depicted in Figure 1. 

 
Figure 1. ACT-R communicates directly with the virtual 
cockpit, both of which run on one machine. In turn, the virtual 
cockpit communicates with X-Plane, which runs on a separate 
machine. X-Plane is also able to replay pre-recorded routes, 
referred to here as the SODAA data, which are used to 
validate the model. 
 

MODEL OVERVIEW 
 

 Prior to constructing the model, we surveyed airline 
procedural documentation and questioned pilots in order to 
determine what domain-specific information was necessary to 
create the model. With this information, we conducted a task 
analysis that defined the sequence of operations a pilot must 
perform to taxi a plane. Ultimately, each of the operations in 
the task analysis was translated into a series of production 
rules. 

The task analysis identified several key components 
that are required for a pilot to successfully taxi a commercial 
jetliner. These components include navigating the taxiways, 
steering the plane, maintaining the speed of the aircraft, and 
scanning the taxiway for incursions. Each of these components 
represents a high-level goal that the pilot is responsible for. 
The details of each component are described in the sections 
below. There are, of course, additional responsibilities of the 
pilot that are not accounted for by these four components. 
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Notably absent are goals for processing incoming and 
outgoing audio transmissions to air traffic control, as well as a 
variety of pre-flight items (including checklists). These tasks 
are absent primarily for tractability, however we hope to 
integrate aspects of these tasks in later versions of the model.  

At the top level, one of the four primary goals is 
chosen probabilistically. When a goal is completed, it returns 
to the top-level and begins the process again. The interaction 
of these goals produces simulated pilot behavior and 
cognition. 
 
Navigating 
 

The navigation goal provides the model with 
situational awareness. The model keeps a chunk in memory 
that maintains the current location (taxiway) of the model, the 
next taxiway in the clearance instructions, and the action to 
perform at that taxiway (e.g., hold, turn right, turn left). In 
order to navigate, the model begins scanning the visual scene 
for signs located on or near the taxiways. When the model 
reads a sign, the content of the sign is compared to the 
navigational chunk stored in memory, and decides what action 
is appropriate (if any).  

 Upon seeing a sign indicating the current taxiway, 
the model checks the navigational chunk to determine if the 
plane is on the correct taxiway. If this is the case, no action is 
taken. If the plane is on the wrong taxiway, however, the 
model must take corrective action, such as radioing ground 
control, coming to an immediate stop, or attempting to find its 
way back on track. The current version of the model does not 
presently cover this, however, this incongruence is 
documented in the ACT-R trace, so that Monte Carlo 
simulations can predict how often this type of error occurs. 
 Upon seeing a sign designating a crossing taxiway, 
the model checks to see if its content corresponds to the 
upcoming taxiway listed in the navigational chunk. If it does, 
the model must then look at the action listed in the 
navigational chunk to decide what to do next. If it does not, no 
action is taken. 
 If the plane is to come to a hold, the model sets the 
target speed to zero. The actual process of decreasing the 
throttle and hitting the brake is taken care of by the maintain-
speed goal. 
 If the plane is to perform a turn, the model begins 
looking at the intersection to determine the distance to the 
turn. When the plane reaches a critical distance to the 
intersection, the turning sub-goal (described in the next 
section) is initiated. 
 
Steering 
  
 The model has two distinct steering mechanisms. 
One mechanism is used only for intermittent corrective 
steering, while the other is specialized for turning. 
 Corrective steering. This goal is responsible for small 
steering adjustments, which are necessary to drive straight 
down a taxiway. Essentially, the purpose of this goal is to 
minimize the distance of the plane to the centerline of the 
taxiway. This involves small-angle corrections and can be 

modeled similarly to how Salvucci’s (2006) model handles 
highway steering of an automobile (though obviously the 
physics are substantially different). 
 Turning. This goal is invoked only when the 
navigation goal signals that a turn is imminent. Steering a 
commercial jetliner through a turn is a complex perceptual-
motor operation, one for which ACT-R did not contain 
adequate motor capabilities. Based on data from the Surface 
Operations Data Analysis and Adaptation (SODAA) tool 
(Brinton, Lindsey, & Graham, 2010), we had access to the 
turn trajectories of multiple commercial jetliners, and were 
able to fit those data using a series of motor adjustments based 
on the speed of the plane and the approximate distance to the 
hypothetical point where the turn is expected to be completed. 
The expected heading of the plane can then be calculated as a 
function of the tangent line at different points on this curve 
and the model then adjusts the yoke accordingly to match the 
new heading value. When the yoke adjustments become 
sufficiently small, the plane is stable and the turn is complete. 
  
Maintaining Speed 
 
 The maintain-speed goal controls the speed of the 
aircraft. The model keeps a chunk in memory that indicates 
the current target speed of the plane. When this goal is 
initiated, the model reads the current speed off of the 
speedometer, and compares this value to the value of the target 
speed in memory. If the current speed it too high, the model 
may apply the brakes. This behavior is stochastic, such that 
the probability of applying the brakes increases as the current 
speed of the aircraft increases. The throttle is activated in an 
analogous manner; if the speed of the plane is too low, the 
model may apply the throttle, and the probability of doing so 
increases as the current speed of the plane decreases. 
Typically, the throttle remains in the idle position for the 
majority of the taxiing. 
 
Scanning the Taxiway 
 
 When the scan-taxiway goal is initiated, the model 
scans the visual environment for possible incursions. 
Currently, this is limited to other planes present on the 
taxiway, but this may be expanded to include other possible 
incursion targets. 
 The model scans each plane in the visual field that is 
nearby. If another plane is encountered, the model must decide 
how to act. If the other plane is in front of the model’s plane 
on the taxiway, the model checks its current speed and the 
distance to the other plane, and determines whether it is 
necessary to reduce speed, or come to a halt. If the other plane 
is not a potential incursion target, no action is taken. 
 

MODEL VALIDATION 
 

 For the ACT-R model to be valuable in HITL 
experiments or computer simulations, it has to be a valid 
model. Conceptually, the ACT-R model should be on 
relatively solid ground in terms of validity due to the 
validation done on the basic components of the architecture 
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and to the extent that the task analysis correctly captures the 
taxiing task. However, further validation is crucial and we 
have a unique opportunity in the case of this particular 
modeling effort. 
 As noted previously, we have access to data collected 
using SODAA at Dallas Fort-Worth (DFW) airport that 
provides an opportunity for operational validation of the 

model using the historical data (Sargent, 2010). The SODAA 
tool dynamically records the position of each plane on the 
taxiways and nearby airspace, thus fully capturing the real life 
data for the taxiing jetliners. Rather than bringing pilots into a 
lab to perform the same task as the model, we can use real-
world taxiing data to compare to our model’s results. 
 

 
Figure 2. X-Plane is shown on the left monitor, and the virtual cockpit and ACT-R trace are shown on the right monitor. 

 
 

Thus far, we have only performed face validation as a 
qualitative assessment of the model’s performance by 
comparing a video of the model performing a specific taxi 
sequence to a video of the same taxi sequence recorded in the 
SODAA data in X-Plane. See Figure 2 for a frame of what the 
running system looks like. We can simultaneously observe the 
ACT-R model as well as the X-Plane environment that shows 
the behavior of the controlled aircraft. The model now 
performs well enough that it is difficult to determine simply 
from watching the X-Plane view whether it is a replay or 
whether it is ACT-R in control. This is, in some sense, a form 
of “Turing test” for the ACT-R model.  
 However, more quantitative validation is necessary. 
We are currently in the process of developing the underlying 
framework that will allow historical data validation. This 
framework involves letting one jetliner to be controlled by the 
ACT-R model while all the other jetliners are replays from the 
SODAA data stream. We can then record the trajectory in both 
time and space of the jetliner controlled by the ACT-R model 
and compare it to the data it replaced from the SODAA 
stream. This will enable a quantitative assessment of our 
model’s performance, though it is not entirely clear exactly 

what measures or metrics are most appropriate for measuring 
the degree of deviation between model and data. If the model 
takes a wrong turn, for instance, that is clearly inappropriate. 
However, what if the model drives almost identical spatial 
trajectory, but a few seconds slower or faster than the human 
pilot? Is that valid enough?  
 Obviously, there are some open issues with respect to 
validation. However, unlike other human performance 
modeling efforts, we are fortunate in that we have a large 
volume of data against which to validate model performance.  
 

DISCUSSION 
 

The current model has several possible applications. 
One potential use is to integrate the model with other 
computational models such as SOS2 to allow for rapid 
prototyping of surface taxiing algorithms. Alternatively, the 
current model may be used to replace humans in HITL 
simulations. Essentially, the HITL simulations may remain the 
same as they are now, but instead of having humans driving 
flight simulators, we can use the ACT-R model to perform the 
same task. The model may also be useful in providing 
estimates for human responses times that are not documented 
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in the literature. Thus, if a researcher needs to know how long 
it takes for a pilot to react to another plane, he or she may 
develop a distribution of response times derived from a Monte 
Carlo simulation. 

There are also many interesting avenues for 
extending the model in the future. For instance, audio 
communication with ground control is likely to be displaced 
by data link communication in near future. Data link provides 
a textual transcript of instructions and communications with 
ground control to the pilot, so that he is able to rely less on his 
working memory. While this technology is likely to make 
taxiing safer, the addition of a new cockpit display may 
influence other aspects of the pilot’s task (Byrne et al., 2004). 
With an ACT-R model, we can predict how this new 
technology will affect a pilot’s ability to perform the task prior 
to deploying it on a wide scale. 

Additionally, the model’s decision-making 
capabilities can be augmented. Byrne and Kirlik (2005) 
investigated how pilots decide when to make a turn based on 
time constraints. Following an incorrect clearance can increase 
the probability of a runway incursion. Though the current 
version of the model is capable of navigating the taxiways, it 
overemphasizes the role of working memory in this task and is 
likely to under predict wrong or missed turns, and provides no 
guidance once a wrong turn has been made. By augmenting 
the decision-making capabilities of the model, we can better 
predictions of runway incursion rates. 

Overall, the model has potential implications for the 
way new surface management systems are designed, tested, 
and implemented. By providing a fast, inexpensive, and 
accurate method for simulating traffic management, we can 
help NextGen achieve its goal. 
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