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Abstract

As computer use becomes more visual in nature,
researchers and designers of computer systems would
like to gain some insight into the visual search strategies
of computer users and the characteristics of displays that
encourage the most efficient of these strategies. Icons,
which are becoming increasingly prevalent, serve as the
focus for a set of studies on the interaction of human
vision with computer displays. Previous work
(Fleetwood & Byrne, 2002) presented a study of “icon
search”  and a set of computational models of the task in
the ACT-R/PM architecture. Presented here are an eye
tracking study, conducted to examine the search
strategies of users, and a revised model based on the
results of the eye tracking study. The revised model
incorporates EMMA (Salvucci, 2001) and changes in
search strategy. Findings indicate key environmental
influences of icon search (particularly set size and icon
quality), evaluate the vision module in the underlying
cognitive architecture, and provide some illumination on
the strategies of users.

1. Introduction
Computer use has become a dominantly visual task.
With the introduction of the graphical user interface
(GUI), computer users spend less time trying to
remember commands and operations and more time
searching the screen for them. As such, much of a users’
time is spent looking for and examining objects on their
displays.

We would like to examine the interaction of human
vision with GUIs in a common context, that of locating
and selecting icons on a computer screen. In order to
have value in an applied setting, we not only want to
investigate the strategies of users in locating icons, but
also the design characteristics of objects that will
encourage the use of the most efficient of these
strategies.

One of the primary issues we would like to examine is
whether it is worth the time and effort to design “better”
icons. Specifically, we would like to identify the
features of icons that allow users to locate and select
icons efficiently. Eventually, we would like to be able to
make predictions regarding human performance in icon-
based displays. To make such predictions, we need to
develop an understanding of the search process that
users go through when looking for a specific icon or
group of icons.

The work described here builds on a previous set of
experiments and computational models of human
performance described in Fleetwood & Byrne, 2002. A
brief discussion of the procedure and relevant results of

that previous work is provided here. The work that
builds upon those results, and which will be the focus of
our discussion, is an eye tracking study of the task and a
revised set of computational models informed by the
eye tracking study.

2. Previous Research
We used ACT-R/PM (Byrne & Anderson, 1998) to
model the experiment. Because the cognitive demands
of the icon search task are minimal, modeling the
perceptual-motor processes (e.g., shifting visual
attention, pointing and clicking) with some fidelity is
critical. The ACT-R/PM architecture combines ACT-
R’s theory of cognition (Anderson & Lebiére, 1998)
with modal theories of visual attention (Anderson,
Matessa, & Lebiére, 1997) and motor movement
(Kieras & Meyer, 1997). ACT-R/PM explicitly
specifies timing information for all three processes as
well as parallelism between them.

In the basic structure of the experiment, participants
were shown a target icon and corresponding filename
and asked to locate and select the target icon amongst a
set of distractor icons. The number of distractor icons
was manipulated in set sizes of 6, 12, 18, and 24. The
“quality” of the icons and distractors was also
manipulated. Icons of “good” quality were based on the
basic visual (“pop-out”) features of shape and color,
whereas lower quality icons had more complex shapes
and were drawn in grayscale. Examples are shown in
Figure 1. The dependent variable being measured was
the response time of the participants. One potential
independent variable that was held constant in this
experiment was the number of icons matching the target
in the search display. On each trial, one-third of the
icons in the search display had the same pictorial icon
and matching border. Thus, ultimately the user was
forced to differentiate among the icons by the file name.

Figure 1. Examples of icons of good, fair, and poor
quality used in the experiment. The good quality icons
were each a single solid color, whereas the fair and poor
quality icons were drawn in grayscale.



Examining that portion of the chart pertaining to the
empirical data in Figure 2, it is evident that as icon
quality decreases (good to fair to poor), response times
increase. Also, not only are the three qualities
significantly different, but the slopes of the lines
representing each level of icon quality are reliably
different. Also, revealed in the analysis was a reliable
linear effect of set size. For each additional six icons
added to the distractor set, the participants consistently
took approximately 350 to 500 ms longer (depending on
the icon quality) to locate the target icon.

The results of this experiment provide some insights
into icon search. First, the cost in time of a search for a
target icon is a linear function of the number of icons in
the display. Second, an effect of icon quality was also
produced, indicating that the quality of the icons has a
significant effect on user response time. This serves to
answer one of our original research questions, whether
the effectiveness of an icon is significantly impacted by
its relative level of quality.

2.1 Computational Modeling of the Experiment
Because our goal was to explore the space of

strategies that users might employ, we constructed two
models of the icon search task representing slightly
different strategies.

Each of the models follow the same basic control
structure. Where they differ is in the specific strategy
that they use to search for and identify the target icon.
In order for the model to select the target icon, it must
first find an icon sharing some characteristic or
“feature” of the target icon. (Each icon is represented in
ACT-R/PM as a list of features. One of these features,
e.g. gray circle, is randomly selected to guide the model
in later search.) Then the model must read the filename
below the icon and compare it to the target filename.
One model, referred to as the “double-shift”  (DS)
model is so named because it requires two shifts of
attention to accomplish this process, one to an icon and
one to the filename below it. The “text-look” (TL)
model is so named because attention is focused directly
on the filename below the icon, and the actual icon is
never attended.  As in the double-shift model, an icon
sharing a feature with the target icon is located, but
rather than shifting visual attention to the icon, it is
shifted directly to the filename below the icon.

It is worth explicitly noting one prediction made by
the double-shift model—the time that it predicts it will
take participants to look at an additional icon. This is
calculated as 420 ms—the time to run three productions
(50 ms each) and two shifts of visual attention (135 ms
each).

In the “good” quality icon condition, only icons
exactly matching the target icon are examined by the
model, and the RT (response time) by set size slope for
the DS model should be 420 ms. This provides a basis
for comparison with the experiment data.

2.2 Results
The fit of the model to the data for both the TL and DS
models was encouraging (See Figures 2 & 3). Most
importantly, both models have retained each of the

pronounced effects that were seen in the data—those of
set size and icon quality.

The proportion of variance explained (R2) by the
models relative to the data from the experiment is 0.99
and 0.98 for the DS and TL models respectively. The
root mean square error (RMSE) and percent average
absolute error between the models and data were 319.37
ms and 13.30% for DS model and 125.70 ms and 4.27%
for the TL model.
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Figure 2. TL model comparison with data from the
experiment.
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Figure 3. DS model comparison with data from the
experiment.

Based on the standard fit metrics, the TL model
appears to be a slightly better fit to the data than the DS
model. This suggests that a search strategy which makes
fewer shifts of visual attention may be more plausible
than a strategy that makes two shifts of visual attention
per icon examined.

Overall, we felt that the performance of the models
relative to the experimental data was encouraging.
However, one caveat deals with the predicted slope of
the line for good quality icons across the four set sizes.
As predicted, the slope for the DS model was calculated
as approximately 420 ms. However, the slope for the
participants in the experiment fell at approximately 355
ms. 420 ms does not fall within the 95% confidence
interval for the 20 participants.

In this instance we have found an aspect of the model
that does not conform well to the data. Real subjects can
find the icon faster than our model. In order to examine
how the search strategies of participants differed from
the model strategies, we studied users’ eye movements
while engaged in the task, accomplished through the use
of an eye tracker.



3. Eye Tracking the Icon Search Task
Eye tracking has been used by researchers to make fine
distinctions regarding the processes used in a visual
search task (for example, Zelinsky & Sheinberg, 1997;
Findlay, 1982) and to gather information on the features
of objects that drive visual search (Williams, 1967;
Gould & Dill, 1969). In the realm of human-computer
interaction, it has been used as a means of
understanding the processes underlying the behavior of
computer users (e.g. Byrne, 2001; Ehret, 2002).

This eye tracking study was designed to provide some
insight into the processes underlying icon search and the
features of the display driving that search.

3.1 Methods
3.1.1 Participants
The participants in the experiment were 10
undergraduate students at Rice University.

3.1.2 Design
The design of the experiment was nearly identical to

the previously described experiment. The independent
variables manipulated were set size (i.e. number of
icons in the distractor set; 6, 12, 18, or 24), target border
(the target icon could have a circle, square, or no-
border), and icon quality (good, fair, poor). The
dependent variable measured was reaction time, and
with the additional use of an eye tracker, the
participants’ eye movements were recorded.

3.1.3 Apparatus/Materials
The eye tracker used was an ISCAN RK726/RK520

HighRes Pupil/CR tracker with a Polhemus
FASTRACK head tracker. Head-mounted optics and a
sampling rate of 60 Hz were used in the experiment.
Point of regard (POR, also referred to as point of gaze)
and cursor position were recorded. Where and when
fixations occurred was calculated using a dwell-based
technique.

3.1.4 Procedure
Participants were presented with a target icon and its
corresponding file name. Clicking a “Ready” button
presented them with a screen that contained a number of
icons (6, 12, 18, or 24), one of which was the target
icon. The participant's task was to identify the target
icon and click on it as quickly as possible. Clicking on
an icon brought them to the presentation of a new target
icon. Response time was measured from the time they
clicked on the ready button to the time they clicked on
an icon in the distractor set.

The location of the target icon was randomly selected
for each trial. The file names were randomly selected
without replacement from a list of 750 names. Once
exhausted, the list was recycled.

Each participant completed four blocks of 36 trials in
addition to the practice block for a total of 180 trials.
Each independent variable was examined at each level
of the other independent variables (4 x 3 x 3 = 36). The
order of presentation was randomized.

3.2 Results
Patterns in the fixation data were similar to those found
in the reaction time data from the previous
experiment—i.e. as set size increases and icon quality
decreases, the average number of fixations increases (as
does response time). There were reliable main effects of
set size, F(3, 27) = 77.08, p < 0.001, and icon quality,
F(2, 18) = 56.60, p < 0.001.

In Figure 4, the proportion of target fixations to total
fixations is presented as a function of icon quality and
set size. Target-matching icons were those icons
identical to the target icons, which comprised one-third
of the distractor set. Participants had a higher proportion
of target fixations relative to non-target fixations with
better quality icons, F(2, 18) = 7.87, p < 0.01, with
Huynh-Feldt correction. Participants made a higher
proportion of fixations to target-matching icons than
would be expected if fixations were randomly directed,
t(9) = 6.90, p < 0.01.
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Figure 4. Proportion of target-matching fixations to total
fixations by icon quality and set size, indicating that
participants made a higher proportion of target-matching
fixations with better quality icons.
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Figure 5. Proportion of specific fixations to total
fixations.

Because the models make several predictions
regarding the reaction time of participants in the good
icon quality condition, data pertaining to this condition
are examined separately and in greater depth (See
Figure 5). Target-matching fixations and two other



“types” of fixations were examined. Color fixations are
those fixations on an icon of the same color as the target
icon, regardless of shape. Shape fixations are fixations
landing on an icon of the same shape as the target icon,
regardless of color.

We were interested in whether the proportion of non-
target fixations that were directed at an icon of the same
color or shape as the target was reliably different than
the proportion that could be expected if the fixations
were random (0.09 and 0.45 for color and shape
respectively). For color fixations there is an indication
that the search strategies of participants were at least in
part driven by the color of the icon, t(9) = 2.77, p <
0.05. For shape fixations, there is no such indication,
t(9) = 0.25, p = 0.81.

Several qualitative patterns emerged in the data,
which are difficult to quantify, but are nonetheless
informative. For one, it seemed that participants in the
experiment used different search strategies depending
on the level of quality of the icons. For instance, in the
good quality condition (Figure 6), the search strategy
used by participants was often directed specifically at
the icons matching the target icon. In this case, the
saccades were nearly all directed to a target icon or fell
in the area between two groups of target icons, leaving
whole areas of the distractor set unexamined.  Further,
this “directed” strategy often worked with a “grouping”
strategy where participants began their search with the
largest group of matching icons and proceeded to
smaller groups of matching icons until the target was
identified. In contrast, search strategies in the poor
quality condition were not directed at icons matching
the target icons and might cover the whole set of icons,
possibly in a circular or zigzag pattern.

Figure 6. Example of a directed search with good quality
icons. The round dots indicate point of regard, going
from darker to lighter with time. The cross-hairs (in the
lower right) indicate the position of the mouse. (The
target, a blue triangle, is associated with the icons labeled
dirigible, heritage, quicksand, reunion, bisector, and
legends, which is the target) The participant begins with
the largest group of matching icons and eventually
proceeds to the single target-matching icon in the lower
right.

3.3 Discussion of Eye Tracking Results
The data revealed that participants were more

accurate in their search with better quality icons. This
effect was manifested in the proportion of target

fixations to total fixations, which increased with each
level of improvement in icon quality. There was also
some evidence for this effect at a qualitative level,
manifested in the “directed” search strategies in the
good quality icons and the “undirected” search
strategies seen with poor quality icons.

The eye tracking data also provided us with some
information as to which features of the good quality
icons were used by participants to guide their “directed”
search. Participants made a higher proportion of
fixations to non-target icons of the same color as the
target icon than would be expected if non-target
fixations were randomly directed, indicating that color
is a feature guiding search in the good quality condition.

4. Revising the Model
It was clear from looking at the search patterns of

participants (Figures 6) that the TL strategy was a closer
approximation of their search strategies. However, even
the Text-Look model falls short of the strategies of the
experiment participants, who often do not even look
directly at a filename to determine whether it is the
target filename.

Another area for improvement is in the number of
shifts of visual attention made by the models. Both the
DS ant TL models made many more shifts of visual
attention (7.55 and 5.60 average shifts per trial,
respectively) relative to the average number of fixations
of participants per trial (3.23). Again, the Text-Look
model is a closer approximation of the participants’
performance; however even the TL model makes
substantially more overt shifts of visual attention than
participants.

This leads us to consider an issue in the underlying
cognitive architecture of ACT-R/PM that other authors
have discussed previously (Salvucci, 2000). ACT-R/PM
currently assumes a direct correspondence between
unobservable attention shifts and observable eye
movements; that is, people fixate the target of attention.
Such an assumption holds in some cases, but it is agreed
upon in the research community that it does not hold in
general (Henderson, 1992; Rayner, 1995). In order to
address this issue, we turned to a computational model
of eye movements that improves upon some of the
underlying assumptions of ACT-R/PM’s vision module.

4.1 Eye Movements and Movements of
Attention (EMMA)

EMMA (Salvucci, 2000) serves as a bridge between
observable eye movements and the unobservable
cognitive processes and shifts of attention that produce
them. Concerning eye movements, the model describes
whether or not eye movements occur, when they occur,
and where they land with respect to their targets.
Concerning visual encoding, the model describes how
peripheral viewing and object frequency affect the time
needed to encode a visual object into an internal
representation. Essentially, encoding time increases as
object eccentricity increases and as object frequency
decreases.

The incorporation of EMMA was expected to have
two primary effects on the models. First, it was



expected to reduce the number of shifts of visual
attention. When the encoding time for a visual object is
less than the time to make the labile portion of the eye
movement to that object, the eye movement is not made,
even though the object has been examined. Second, by
calculating the time to make an eye movement, EMMA
allows us to make predictions as to the relative
efficiency of various icon search strategies. Specifically,
strategies that make shorter shifts of visual attention can
be expected to be more efficient.

4.2 Improving the Model Search Strategies
Our goal was to change the search strategies used by

the model based on the results of the eye tracking study.
For example, there was some qualitative evidence for a
“grouping strategy” in the eye tracking study,
particularly with good quality icons. As a result, we
chose to implement a simple strategy to account for this
behavior in our new models. The model would simply
select the target-matching icon nearest to the icon that is
the current focus of visual attention. Thus, the models
would search within a group of target-matching icons
before moving on to a new group. Such a strategy also
ties in with the predictions made by EMMA.
Specifically, a strategy that makes the shortest possible
shift will be the most efficient strategy.

5. Modeling Results
The performance of the revised model was comparable
to that of the previous versions. For the TL model; the
RMSE was 129 ms; the PAAE was 5.89%, and the R2

was 0.99 (Figure 7). The slope of good quality line was
approximately 300 ms.
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Figure 7. Response time by set size and icon quality for
the revised Text-Look model and the experiment data.

We also found that the qualitative performance of the
model was quite improved with respect to the “directed”
and “grouping” strategies seen in the data. An example
of a trial where these strategies were employed was
given, which was shown in Figure 6. As an example of
the capability of the models, the exact same trial was
run with the model (see Figure 8). The line running
through the figure shows the resulting trace of the POR
data of the newest TL model. The model begins its
search from the “Ready” button and enters the depicted
portion of the trial from the lower-right corner. The
model proceeds in a fashion quite similar to that of the

human participant, first examining the largest group of
target-matching icons before moving on to the nearest
group and finally to the target icon in the lower-right
corner of the window (labeled “legends”) The model
would not follow this exact search pattern every time
(the first icon that the model selects for search is
randomly chosen from the target-matching icons
presented), but the capability of the model to mimic
human performance in this respect is encouraging.

Figure 8. Example of the Text-Look model running an
identical trial to that presented in Figure 6. The line
indicates the POR path of the model. The model POR
data begins at the “Ready” button, which enters the view
in the lower-right corner and finishes by selecting the
icon above the filename “legends. ”

5.1 Discussion of Modeling Revisions
The effect of only incorporating EMMA into the models
was an overall increase in response time. The previous
models used a constant parameter of 135 ms for each
shift of visual attention. EMMA uses a set of algorithms
to compute the encoding and saccade time A close
examination of this attribute of EMMA revealed that
longer saccades, such as those from one side of the
distractor set to the other side, took an estimated time
much greater than 135 ms, and were thus responsible
for much of the increase in average saccade time.

Because longer saccades result in much longer
response times, one way to reduce the overall response
time of the model is to reduce the average length of
saccades that it must make. The “nearest” strategy that
was implemented was a nearly optimal strategy for
minimizing saccade length.

This “nearest” strategy has further implications as
well. For one, it adds some credence to our observation
that participants seemed to search by groups of target-
matching icons, which we were only able to verify at a
qualitative level. Such a strategy would generally result
in a very short average saccade distance.

The nearest strategy also has implications well
beyond the realm of icon search.  Tullis (1997) states,
“The ways in which the elements are grouped plays an
important role in both the ease with which the users can
extract the information and the interpretations that they
assign to it.” Other researchers have made similar
distinctions (Cakir, Hart, and Stewart, 1980). From this
perspective, the organization of information on the
screen has value to the user by giving them some



additional categorical information as well as improving
the general “readability” of the information. Not to
diminish the value of this categorical information, but
from the perspective of our modeling effort, grouping
the information on the screen adds value at a much
lower level in the cognitive system—in the visual
search strategies employed by users. Grouping
information will reduce the number and average
distance of saccades made by the user while searching
for a desired piece of information. Shorter saccades and
less of them will result in finding the desired
information more quickly.

 It is likely we could improve the model to
experiment data fit beyond its current state if we
manipulated the feature lists that comprise how ACT-
R/PM “sees” each icon. Each icon is represented in
ACT-R/PM by a list of features, which were constructed
for the initial models and subsequently tweaked to
achieve a good model to data fit. It is encouraging that
the revised models showed similar performance to
previous models without any changes to the feature
lists. However, the fact that construction of the feature
sets plays such an important role in the predictive power
of the model indicates a clear weakness in modeling a
visual process in ACT-R/PM. In fact, this issue goes
beyond ACT-R/PM; to our knowledge, no one has
developed a method for systematic feature
decomposition of displays such as those used here.
Much of the predictive power of modeling in general is
lost when some of it has to be done in a post hoc
manner. Without this work, much of modeling the
visual world will functionally remain a “free parameter”
in any modeling effort.

6. General Discussion and Conclusions
Overall the performance of the models was

encouraging. Each of the major trends in the data was
well captured, the effect of set size, the effect of icon
quality, and the general icon search strategies employed
by users.

The number of icons in the display is a powerful
predictor of icon search performance. In each of the
experiments and in each of the models, there was a
linear increase in icon search time with an increase in
set size.

The level of icon quality also proved to be a powerful
predictor of performance. Designing effective icons
adds value to a system by reducing user search times.

The strategies that were implemented in the models
also provided some insight into the strategies of human
computer users. We developed two different strategies
of icon search and were able to achieve comparable
results with both strategies. We also found that the
features of the display, such as set size and icon quality,
affected both models in similar fashions. This suggests
that icon search is a cognitive process that is driven in a
“bottom-up” fashion more than a  “top-down”
fashion—i.e. variation in the characteristics of the
display, such as the quality and number of the icons,
have a greater impact on the search times of users than
does variation in the strategies of users.

    Our original goal in this set of studies was to gain
some understanding of the icon search process. This set
of studies sheds some illumination on the factors that
contribute to that process. A larger goal of this line of
research is to develop an engineering level model of the
task that can aid in the design of real world systems.
The models we have developed here make a lot of
headway in that direction and have served to point out
where future cognitive models and modeling
architectures (ACT-R/PM in this case) need to be
improved. More importantly, the models developed here
serve to make some initial predictions regarding the
performance of users in icon based systems, information
that we hope will aid the designers of visual displays.
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