


Abstract

Factors Influencing Speed-Accuracy Tradeo�s in Decision Making

by

Je�rey C. Zemla

Many simple decisions allow us to trade o� between speed and accuracy. When time

is critical, decisions can be made quickly but accuracy su�ers. Conversely, one may spend

more time making a decision which often results in more accurate decisions.

Speed-accuracy tradeo�s have been studied in a number of domains including motor

control (Fitts, 1954), perception (Usher & McClelland, 2001), and higher order reasoning

(Kahneman & Frederick, 2002).

Recent research has examined a set of normative models for how one should trade o�

speed and accuracy (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006); that is, how long

someone should spend deliberating prior to action in order to maximize some reward.

However, empirical work has shown haphazard adherence to these normative models (e.g.,

Zacksenhouse, Bogacz, & Holmes, 2010). While some subjects behave optimally, many do

not.

In two experiments, several factors that a�ect speed-accuracy tradeo�s in a

perceptual decision-making task are investigated. In one experiment, it was found that

feedback and shorter blocks not only improved participants’ task ability, but also resulted

in more optimal speed-accuracy tradeo�s. In a second experiment, manipulating trial

di�culty and subjects’ awareness of di�culty level a�ected task performance. However,

despite predictions from a normative theory, participants did not engage in an optimal

speed-accuracy tradeo� policy.
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Introduction

Consider the following situation: a student is taking a multiple-choice exam. There

are only two minutes remaining, but he has four unanswered questions. He spends a few

seconds looking at one question, but none of the choices seem familiar, so he quickly makes

a guess and moves on. The choices to the next question look very familiar—he remembers

seeing the answer in his textbook, but cannot recall what it is. Still, he thinks that if he

stares at the question long enough the answer will come to him. In the last few seconds,

the answer suddenly pops into his head and he marks it down—but now time is up and he

has left two questions blank.

The decision to spend more time on some problems than others can have important

consequences, but how is this decision made? An optimal solution to this problem is

complex, and requires several pieces of information. Important questions to consider

include: How di�cult is each problem? If more time is spent on a problem, do the chances

of getting it correct increase? How will the time spent on one problem a�ect the amount of

time left for other problems?

Over the past few decades, a psychological framework has emerged to describe how

people are able to trade o� speed and accuracy in decision making (Ratcli�, 1978; Ratcli�

& Rouder, 1998). This framework serves to describe the process by which humans make

simple decisions. It is only recently, however, that researchers have started using this

framework to assess the optimality of these tradeo�s with respect to normative theories

(Bogacz, Hu, Holmes, & Cohen, 2010; Bogacz et al., 2006; Simen et al., 2009; Zacksenhouse

et al., 2010; Balci et al., 2011). That is, while it has long been known that humans are

capable of trading o� speed and accuracy in decision making, it is still unclear whether

they are able to make optimal tradeo�s, or whether they exhibit systematic biases in their

decision making.

In two experiments, I explore factors that influence a person’s ability to trade o�

speed and accuracy in a decision making task. Do people manage their time in such a way
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to maximize reward? If not, what causes them to behave sub-optimally? What cues help

people determine how much time they should spend on any given problem?

Several factors that may a�ect a person’s ability to make fast and accurate decisions

are examined. These factors include feedback, block length, foreknowledge of task di�culty,

and variability of trial di�culty. These manipulations provide cues that may influence a

person’s ability to manage their time e�ectively. Previous research has shown that a

minority (roughly 30%) of subjects are able to e�ectively trade o� speed and accuracy in a

simple perceptual decision making task (Zacksenhouse et al., 2010). It is hoped that

providing additional cues may assist people in selecting a more appropriate speed-accuracy

tradeo� policy.

Background

Sequential Sampling Models

Over the course of many years, a broad class of models known as sequential sampling

models have emerged as a comprehensive solution to the question of how humans are able

to make simple binary decisions (Ratcli�, 1978; Ratcli� & Rouder, 1998; Usher &

McClelland, 2001; Brown & Heathcote, 2008; Busemeyer & Townsend, 1993; Wagenmakers,

Van Der Maas, & Grasman, 2007). Sequential sampling models have been used extensively

to model signal detection tasks: a subject is presented with an ambiguous stimulus that is

drawn from one of two underlying distributions, and the subject must determine which

class the stimulus is a member of. Examples of signal detection tasks include perceptual

tasks such as brightness discrimination (dark or light) or length discrimination (short or

long). A stimulus in these experiments o�ers clues as to which class it belongs, but noise in

the environment and in our perceptual abilities make classification ambiguous. Sequential

sampling models propose that we are able to make judgements about a stimulus by

repeatedly sampling the stimulus and integrating evidence over time; that is, our brain

repeatedly computes class membership of a stimulus until some level of confidence is



3

Figure 1 . In the random dot motion paradigm, a cluster of dots move in random directions.

The task is to decide which direction, on average, the dots are moving (left or right). The

proportion of dots moving in a predetermined direction, known as the coherence level,

a�ects the di�culty of the task. In this figure, arrows and shading are for expository

purposes only.

reached. The signal-to-noise ratio of a stimulus determines how quickly and accurately it

will be perceived.

To illustrate this, consider the random dot motion paradigm (Britten, Shadlen,

Newsome, & Movshon, 1992) in which a subject is presented with a cluster of moving dots

(see Figure 1). The majority of the dots move in a random direction, though a small

proportion of them move coherently to the left or the right. The task of the subject is to

decide whether the prevailing motion of the dots is to the left or the right, and respond

accordingly with either a button press or a saccade towards the direction of motion.

Shadlen and Newsome (1996, 2001) conducted this experiment with monkeys and found

that in the middle temporal area (MT), an area of the brain associated with motion,

neurons fired selectively for dots moving in a particular direction. This is consistent with

previous research showing that the firing rate of neurons in MT roughly represents the

instantaneous direction of motion of a stimulus (Zeki, 1974). Neurons in the lateral

intraparietal area (LIP), on the other hand, were found to correlate with the integration of
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neuronal firing in MT, and thus reflect the average direction of motion over a short time

span.

In this simplified example, the firing rate of neurons in MT represents the available

evidence being sampled, whereas the firing rate of neurons in LIP represents the

accumulation of evidence over time. Thus the firing rate of neurons in the LIP may

represent the decision variable which is directly responsible for a subject’s response. As

shown in Figure 2, the firing rate of neurons in LIP is highly predictive of behavioral

measures such as response time and accuracy.

Figure 2 . Neurons in MT (left, bottom) fire relative to the motion strength, i.e., the

proportion of dots moving left or right. The firing rate of these neurons is constant over

time as long as the motion strength remains fixed. Neurons in LIP (left, top) represent an

integration of the firing rate of MT neurons over time. Thus in MT, the di�erence in firing

rate of left-selective and right-selective neurons remains relatively fixed over time, whereas

the corresponding firing rates of left- and right-selective neurons in LIP diverge over time.

The pattern of firing rates in LIP is highly predictive of both behavioral response time and

accuracy (right). Figure from Gold and Shadlen (2007).
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The precise mathematical basis by which evidence is accumulated is subject to

considerable debate. For instance, some models (Vickers, 1970; Smith & Vickers, 1988)

hypothesize separate accumulators for each response option, whereas others (Ratcli�, 1978)

model accumulation of evidence using a single binary decision variable. Additional debates

concern whether the amount of evidence needed is fixed or relative, whether there is

inhibition between response accumulators, or whether evidence decays over time (Usher &

McClelland, 2001). While these di�erences may highlight important conceptual issues, they

often have a relatively small impact on behavioral predictions.

Though sequential sampling models are often used to model signal detection tasks,

they have been used to model a wide wide variety of popular psychological paradigms,

including the random dot motion task (Simen et al., 2009), the lexical decision task

(Ratcli�, Gomez, & McKoon, 2004), the picture word interference task (van Maanen, van

Rijn, & Borst, 2009), the implicit association test (Klauer, Voss, Schmitz, &

Teige-Mocigemba, 2007), and the go/no-go task (Shenoy & Yu, 2012), among others.

Though these tasks are generally employed for very di�erent purposes, sequential sampling

models have proven successful in modeling the decision process underlying all of them.

Thus, sequential sampling models describe a generalized process used to make simple

two-alternative forced choice tasks that are widely prevalent in psychology.

Moreover, sequential sampling models have been successful in explaining decision

making at multiple levels (Marr, 1982). Sequential sampling models are typically described

as process models, sometimes being implemented as neural networks (Usher & McClelland,

2001) or within cognitive architectures (Lewis, Shvartsman, & Singh, 2013; van Maanen,

van Rijn, & Taatgen, 2012), though there is a growing body of evidence that such a process

is implemented in the brain (Gold & Shadlen, 2007; Bogacz, 2007) and that this process is

rationally adapted to the environment (Bogacz et al., 2006).
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Ratcli� Di�usion Model

One of the most successful and widely used sequential sampling models is the Ratcli�

di�usion model (RDM; Ratcli�, 1978; Ratcli� & Rouder, 1998). The RDM posits that the

decision making process can be described as a Wiener di�usion process with drift (Feller,

1968), shown in Figure 3.

Figure 3 . The Wiener di�usion process describes a stochastic process in which the value of

a decision variable (blue) drifts towards an upper or lower boundary. The upper and lower

boundaries (red or green) represent binary response options. Here, the green boundary

represents a conservative threshold: the process will take longer to complete, but the

outcome is more stable. Conversely, the red boundary will result in a shorter decision time,

but the outcome is more susceptible to noise.

The simple version of the RDM (Ratcli�, 1978) contains three free parameters: a drift

rate (v), a decision threshold (a), and a non-decision component (T
er

). The drift rate

reflects the average rate of evidence accumulation over time. It is analogous to sensitivity

(dÕ) in signal detection theory (Green, Swets, et al., 1966), and represents a subject’s
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ability to discriminate between two signal classes. Thus, the drift rate is a function of both

the stimulus itself and the subject’s ability to perceive that stimulus. High drift rate values

reflect the ability of a subject to discern a stimulus class accurately.

Table 1

Ratcli� Di�usion Model Parameters

Parameter Description

a Decision threshold

‡ Variability in drift rate within trial (scaling parameter)

z Mean starting point

v Mean drift rate

T

er

Mean non-decision time

s

z

Variability in starting point

s

v

Variability in drift rate across trials

s

ter

Variability in non-decision time

The decision threshold denotes the amount of evidence required by the subject before

making a response. A high decision threshold means that the subject requires a lot of

evidence (high confidence) before making a response; a low decision threshold means the

subject is willing to respond with less evidence. Though choosing a high decision threshold

will lead to more accurate responses, it also necessitates that those responses will be slower

as more time is needed to accumulate evidence. Thus, the decision threshold directly

controls the speed-accuracy tradeo� policy of a subject.

Lastly, the non-decision time accounts for any time in the process that is not strictly

attributable to decision making. This may incorporate time for stimulus encoding or motor

response time. Additionally, there is a single non-free parameter (‡) which reflects the

amount of intrinsic noise in the process. This parameter is often referred to as a scaling
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parameter, as all other parameters can be described by their proportion to ‡. By

convention, this parameter is set to 0.1.

The RDM has been extended to include additional parameters (Ratcli� & Rouder,

1998). A biased starting point (z) can be used to model a subject’s prior belief that the two

outcomes are not equally likely, or an imbalance in the value of the two outcomes. This

parameter is analogous to beta (—) in signal detection theory. Between-trial variability in

drift rate (÷), thought to reflect variability in stimulus encoding, is necessary to account for

slower response times for incorrect compared to correct responses. Conversely, variability in

starting point (s
z

) is used to model fast errors, perhaps due to residual activation from

previous trials. Lastly, variability in non-decision time (s
ter

) is used to account for a shift in

the leading edge of the response distribution (Ratcli�, Thapar, & McKoon, 2004), and

reflects variability in encoding and motor response processes.

While the full parameter set (Table 1) is needed to model many nuanced behavioral

phenomenon, the simple three-parameter model is frequently used for mathematical

tractability and clarity. Predictions from the reduced three-parameter model correlate

highly with the more flexible but higher-parameter models (Bogacz et al., 2010), and thus

is useful when one is not interested in modeling these nuanced e�ects.

The RDM is notable in that it predicts not just error rate and average response time,

but instead predicts entire distributions of response times. Additionally, it can predict both

slow and fast errors, independent response time distributions for both correct and incorrect

responses, and account for the interactions between speed and accuracy.

In the Ratcli� Di�usion Model, the decision threshold is under the direct volitional

control of the subject. A critical question is how participants choose an appropriate decision

threshold. Intuitively, a subject should set a high threshold when accuracy is important,

and a low threshold when speed is important. Indeed, when subjects are alternately

instructed to respond quickly and accurately, subjects are capable of complying, and

responses can be modeled solely as a di�erence in threshold level (Ratcli� & Rouder, 1998).
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However it is not immediately clear how one should choose a threshold in the absence

of explicit instruction. It has been suggested that participants strive to minimize Bayes

Risk, a weighted combination of accuracy and decision time (Busemeyer & Rapoport,

1988). This definition may not be particularly useful though, as it simply shifts the

question to how these terms should be weighted.

If, however, the relative values of accuracy and time are made more explicit, a

normative solution may be present. Consider a common scenario, in which a subject must

maximize a task score in a finite amount of time. Such scenarios are common in the real

world, for instance when a student seeks to maximize his score on a time test. In this case,

the normative solution is to maximize the reward rate; that is, to maximize one’s score per

unit time. This idea was recently proposed by Bogacz et al. (2006), and is mathematically

similar to a popular normative theory in ecology: optimal foraging theory.

Optimal Foraging Theory

Optimal foraging theory (OFT) is a prominent theory in ecology designed to test the

hypothesis that animal foraging and predatory behavior is an optimal response to the

organism’s environment (Davies, Krebs, & West, 2012; Stephens & Krebs, 1987). A central

component of OFT involves determining an animal’s response to a diminishing food

supply: At what point should an animal abandon a low-yield resource in favor of seeking a

more plentiful resource?

Suppose an animal forages in a patch of berries. As it consumes the berries in the

patch, it begins to take longer to find more berries within the patch. Thus, the rate of

return (berries consumed per unit time) diminishes as the animal exploits the resource.

The rate of return is described as:

R = G(t
W

)
t

B

+ t

W

(1)

where R is the global rate of return, t

W

is the time spent foraging within a patch, t

B



10

is the time spent between patches (i.e., searching for a new patch), and G(t
W

) is the gain

(e.g., total number of berries) achieved from leaving a patch at time t

W

. This equation

describes the relation between the total gain achieved and the time needed to acquire that

gain.

A foraging animal faces a choice: at any point, it can continue to search for berries

within a patch, or it can leave to seek a more plentiful patch. Charnov (1976) posits that

the normative response in such a situation is to exploit a patch until the rate of return

from the patch drops below the average rate of return across many patches. This idea is

embodied in Charnov’s marginal value theorem:

d

dt

ú
W

G(tú
W

) = R(tú
W

) (2)

or equivalently:

d

dt

ú
W

R(tú
W

) = 0 (3)

If G(t
W

) increases asymptotically there exists a unique positive solution t

ú
W

to this

equation, illustrated in Figure 4. G(t) plots a gain curve of diminishing returns. By

convention, between patch time (t
B

) is plotted to the left of the y-axis, and within patch

time (t
W

) is plotted to the right of the y-axis. A line can be drawn from the time of

departure from the previous patch to the point on G(t) where an organism departs from

the new patch. The slope of the line is equal to the rate of return, R. In order to maximize

R, the optimal solution is to choose a t

W

such that R lies tangent to G(t) (satisfying

Equation 2), as in R1. If an organism departs the patch later (t2) or earlier (t3) than t

ú
1, the

overall rate of return for the organism is less than optimal. As such, the optimal time spent

foraging within a patch depends not only on the shape of the gain curve, but also on the

time spent between patches.

This solution describes the normative response when G(t) remains the same across all

patches. However the framework can be extended to accommodate multiple patch types,
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Figure 4 . The solid black curve indicates a gain function, with time on the x-axis and

cumulative gain on the y-axis. Rate of return is maximized (red line) when the derivative

of the gain curve at t

w

is equal to the rate of return.

i.e., when some patches are more profitable than others:

R =

Nq
i=1

⁄

i

G

i

(t
W

i

)

t

B

+
Nq

i=1
⁄

i

t

W

i

(4)

Here, N denotes the number of patch types, G

i

denotes the gain curve of patch type

i, and t

W

i

denote the time spent within patch type i. ⁄

i

denotes the probability of

encountering patch type i, where
Nq

i=1
⁄

i

= 1. In this case, each patch has its own optimal

within-patch time t

W

i

. Again, a unique solution exists to this problem, and is given by:
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ˆ

ˆt

ú
W 1

R(tú
W 1, t

ú
W 2, ..., t

ú
W

N

) = 0

ˆ

ˆt

ú
W 2

R(tú
W 1, t

ú
W 2, ..., t

ú
W

N

) = 0 (5)

...

ˆ

ˆt

ú
W

N

R(tú
W 1, t

ú
W 2, ..., t

ú
W

N

) = 0

Thus for a finite set of patch types, a vector of unique optimal departure times exists.

The optimal values depend on the time between patches, the shape of each patch’s gain

curve, and the prevalence of each patch type.

Although optimal foraging theory was developed within the field of ecology,

psychologists have recently began using the theory to understand cognitive processes. OFT

has been used to model domains such as human information seeking on the web (Pirolli,

2007), semantic memory retrieval (Hills, Jones, & Todd, 2012), and visual search (Cain,

Vul, Clark, & Mitro�, 2012).

Optimal Threshold Setting

Bogacz et al. (2006) hypothesized that decision makers should trade o� speed and

accuracy in a manner analogous to optimal foraging theory. Equation 1 can be expressed in

terms of the Ratcli� di�usion model. In this case, G(v, a) represents task accuracy as a

function of drift rate and decision threshold (Ratcli� & Tuerlinckx, 2002; Bogacz et al.,

2010):

G(v, a) = 1 ≠ 1
1 + e

2va
‡2

(6)
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t

W

denotes the average decision time as a function of the decision threshold:

t

W

= a

v

tanh(va

‡

2 ) + T

er

(7)

t

B

denotes the time between trials (inter-stimulus interval).

To determine the optimal thresholds, one must first fit the di�usion model to

behavioral data to determine the drift rate (v) and non-decision time (T
er

) for a given

subject and task. These values may be substituted in to Equation 6 and Equation 7,

leaving a single unknown variable (decision threshold, a). Note that these equations hold

only in the restricted three-parameter RDM; the extended parameter set does not allow for

an analytical expression of accuracy and decision time.

These predictions were tested in a series of experiments, reviewed in Holmes and

Cohen (2014). Simen et al. (2009) examined several factors that are thought to influence

selection of a decision threshold, including manipulation of the inter-stimulus interval (ISI

or t

B

). In a random dot motion experiment, they found that changes in the ISI across

blocks (.5, 1, or 2 seconds) led participants to adopt di�erent decision thresholds.

Specifically, participants chose lower thresholds when the ISI was shorter, in line with

predictions of reward rate maximization. Critically, manipulating the ISI should not a�ect

one’s decision threshold in several other normative theories, such as minimization of Bayes

Risk or decision time, or maximization of accuracy. Additional experiments found that

biasing the stimulus probability (i.e., making one direction of motion more probable than

another) or manipulating the relative reward of these responses led to a shift in the RDM’s

starting point towards the more probable or more valuable stimulus. This finding is

independent from decision threshold selection, but still supports the theory of reward rate

maximization put forth by Bogacz et al. (2006).

One limitation of this finding is the authors’ reliance on pooling subject data

together, a technique which risks misrepresenting the true behavior of individual subjects

(Estes & Maddox, 2005) in exchange for statistical power. Additionally, the authors found
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that participants tended to choose a threshold higher than optimal, and this deviation

grew as the ISI was reduced. Thus while these findings support some of the general

principles behind the reward rate maximization theory, a more direct comparison between

empirical results and theoretical predictions demonstrated systematic violations of a strict

adherence to the normative theory.

Bogacz et al. (2010) corroborated these findings by showing that participants

modulate their decision threshold based on the ISI as well as time penalties for incorrect

responses. These manipulations, which both extended the average trial time, led

participants to adopt a more conservative threshold as predicted by the theory of reward

rate maximization. Again, however, a more direct test of the theory comparing optimal to

observed thresholds shed some doubt on the theory. Most participants chose decision

thresholds that were higher than optimal, supporting an alternative theory that

participants are particularly sensitive to accuracy, and maximize a weighted combination of

reward rate and accuracy. The authors also tested a third hypothesis, that participants

implicitly assume a weighted penalty for incorrect responses, but ultimately found that this

theory did not fit the data quite as well as the weighted combination of reward rate and

accuracy.

Balci et al. (2011) re-examined previous findings with an extended version of the

task. They found that while initially subjects had a bias towards accuracy, as shown

previously, participant thresholds approached optimality with extended practice on the

task. This suggests that decision makers act conservatively as they learn a new task, but

after they become more familiar with a task they are able to perform near optimally. This

is perhaps the most direct evidence in support of the reward rate maximization theory.

The authors also examined how participants perform when the di�culty of the task is

varied across blocks. An ideal participant should choose a unique threshold for each block,

as trial di�culty a�ects the shape of the speed-accuracy curve and thus the optimal

threshold. Instead, it was found that participants chose a single threshold that performed
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well across blocks; that is, they chose a threshold that worked best for the average di�culty

across blocks. Note that despite the manipulation in trial di�culty, an optimal solution

does not entail the multi-patch solution given in Equation 4 and Equation 5. This is

because within any block, every trial is exactly the same di�culty. As such, participants

cannot trade o� between trial types. For instance, they cannot answer more quickly on

harder trials in the hopes that the next trial will be easier.

It is unclear why participants seemed to choose a single threshold across blocks,

though explanations abound. It may reflect some limit in the ability of participants to

rapidly shift decision thresholds because it is computationally di�cult, or perhaps switching

thresholds incurs a cost of cognitive control (Holmes & Cohen, 2014). Alternatively, it may

be a more pragmatic choice to choose a robust strategy that does not rely upon one’s

ability to discern di�erences in di�culty (trial type), which in itself may be a di�cult task.

Zacksenhouse et al. (2010) found that roughly 30% of participants perform according

to an optimal strategy. However, the remaining 70% of the data can be explained as a

tradeo� between optimality and robustness. This theory assumes that there is uncertainty

in the timing of the experiment; that is, participants may not be able to accurately

estimate the delay between trials. When uncertainty is taken into account, participants

seem to choose a robust strategy such that the chosen decision threshold will result in

decent performance for a range of inter-stimulus intervals. Specifically, participants may

choose a threshold that maximizes the reward for the worst possible scenario in a given

range of inter-stimulus intervals.

Overall it seems that while participants are sensitive to reward rate, behavior

deviates systematically from that predicted by the reward rate maximization theory.

Participants almost always choose a threshold that is too high, though with extended

practice on a task the threshold becomes closer to optimal. This initial tendency to set a

threshold too high might be explained by a preference for accuracy (over reward) or noise

in a subject’s ability to estimate inter-stimulus intervals.
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Current Research

Overview

Previous research has shown that under some circumstances, in the absence of

specific instruction, participants select a decision threshold that maximizes reward rate.

However these results are mixed, showing that many subjects are unable to do so. In two

experiments, I examine a variety of factors expected to influence a participant’s ability to

maximize reward rate.

Feedback is widely considered an important factor in successfully learning a new skill.

However in some instances learning can occur without explicit feedback, perhaps as the

result of self monitoring. It is not clear the extent to which feedback plays a role in helping

subjects adopt an optimal speed-accuracy tradeo� policy. While most of the literature on

optimal threshold setting has been conducted with experiments that provide feedback after

each trial, it is not uncommon to perform similar experiments without feedback (e.g.,

Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009).

This question is partially addressed by Starns and Ratcli� (2010), who examined

performance on a numerosity judgement task. The authors found that indeed, decision

thresholds were closer to optimal in the feedback condition compared to the no-feedback

condition for younger participants, whereas older participants showed a strong preference

for accuracy, and thus did not show a di�erence in decision threshold.

The current experiment di�ers in that feedback is manipulated on a within-subjects

basis. This provides the opportunity to quantify the performance gain for feedback, and

assess changes in performance pre- and post-feedback. If feedback serves as a mechanism

for learning the task, changes in drift rate and decision threshold should be apparent after

feedback is introduced.

Block length is another factor that may a�ect one’s ability to manage time e�ectively.

Research in vigilance has shown that performance on a repetitive task will decline over

time (e.g., Mackworth, 1948), a result of fatigue and inattention. It is not known how this
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vigilance decrement a�ects cognitive parameters of the di�usion model.

Another aspect which may a�ect selection of a decision threshold is the variability of

trial di�culty. In the experiments reviewed above, trial di�culty was kept constant

throughout a block of trials. In this case, the optimal solution is for a participant to set a

new threshold that maximizes performance for each block (di�culty level). However, when

the di�culty of trials varies within a block, a new strategy is possible: participants may

choose to respond more quickly on di�cult trials in hopes of getting an easier trial. That is,

there are additional tradeo�s between trial types that have not been explored in the extant

research. A generalization of the reward rate maximization theory used in optimal foraging

theory (Equation 5) allows for the possibility of maximizing performance across a block of

trials with multiple di�culties. The implication here is that people may perform di�erently

simply by shu�ing the order of trials, behaving one way when trials are grouped into easy

and di�cult blocks, and another way when trials are intermixed. This may have important

consequences for experimental design.

Some evidence suggests that participants do indeed perform di�erently when trials of

varying di�culty are mixed within a single block. In a word naming task, response times

are slower and error rates are lower for easy trials when mixed with hard trials; conversely

response times are faster and error rates are higher for hard trials when mixed with easy

trials (Rastle, Kinoshita, Lupker, & Coltheart, 2003; Lupker, Brown, & Colombo, 1997).

Unlike Balci et al. (2011), this result suggests that participants can make adjustments in

decision threshold between blocks. However it is still unclear whether participants can

modulate their decision threshold within a block, or whether a single threshold is chosen

for both di�culty levels.

Lastly, foreknowledge of task di�culty may influence a participant’s speed-accuracy

tradeo�. In a typical psychophysics experiment, trials are not labeled to indicate di�culty.

Labeling trials as easy or hard obviates the need to estimate trial di�culty, a factor that

a�ects the optimal decision threshold. Thus although Balci et al. (2011) found that
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participants chose a threshold corresponding to the average di�culty level, labeling trials

might assist participants in determining an appropriate speed-accuracy tradeo� policy

without needing to make a subjective assessment. Foreknowledge of task di�culty may be

particularly important in conjunction with variability of trial di�culty. It seems plausible

that subjects may adopt separate thresholds for di�erent trial di�culties only when they

can be sure these di�erences are legitimate, and not due to noise.

Pilot Study

A pilot experiment was conducted to assess the validity of these ideas. Ten

participants completed a random dot motion experiment very similar to that described in

Experiment 1 below. The key manipulations were variability of trial di�culty and block

length.

The experiment consisted of two five-minute and five one-minute blocks in which

participants were instructed to get as many points in the time allotted, gaining one point

for a correct response and losing one point for an incorrect response. Each trial was

randomly assigned a di�culty level (easy, medium, or hard) which was manipulated by the

coherence level of the dots (20%, 15%, and 10% respectively). In an e�ort to prevent

participants from adjusting their speed-accuracy tradeo� throughout the experiment,

feedback was not provided after each trial. However, after each block participants were

informed of how many points they earned during that block. The order of blocks was

randomized.

Analysis hinted at a di�erence in speed between the one-minute (M = 1.8s) and

five-minute (M = 2.11s) blocks, F (1, 9) = 4.21, p = .07, Cohen

Õ
sf = .68, as well as a

di�erence in accuracy between the one-minute (M = .85) and five-minute (M = .8) blocks,

F (1, 9) = 3.61, p = .09, Cohen

Õ
sf = 0.63. Additionally, as expected, there was a linear

e�ect of di�culty on response time (M
easy

= 1.77s, M

medium

= 1.93s, M

hard

= 2.17s,

F (1, 9) = 13.68, p = .005) and a linear e�ect of di�culty on accuracy (M
easy

= .88,
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M

medium

= .84, M

hard

= .76, F (1, 9) = 56.5, p < .001).

A di�usion model analysis was conducted in order to discern which parameters of the

RDM could explain these behavioral di�erences. Both drift rate and decision threshold

were allowed to vary by block length and trial di�culty. Note that a rise in accuracy and a

decrease in response time cannot be explained by a change in decision threshold alone. The

simplified RDM was used, and as such between trial variability in drift rate, variability in

non-decision time, and variability in starting point were not included in the model.

Starting point was constrained to be halfway between the upper and lower decision

thresholds, and non-decision time was estimated once for each subject and did not vary

across blocks or trial di�culty.

An analysis of decision thresholds revealed an interaction between block length and

trial di�culty, F (2, 18) = 3.74, p = .044, depicted in Figure 5. At face value, it appears

that participants do not alter their decision threshold by trial di�culty in the five-minute

blocks, but do in the one-minute blocks. However, it is not immediately clear why this

would be the case. A main e�ect of block length on decision threshold was not observed,

F (1, 9) = 0.02, p = .9, nor was a main e�ect of trial di�culty on decision threshold,

F (2, 18) = .86, p = .44.

As expected, the di�usion model analysis uncovered a linear relationship between

trial di�culty and drift rate, with harder trials having lower drift rates, M

easy

= .137,

M

medium

= .09, M

hard

= .052, F (1, 9) = 7.57, p = .02. Analysis hinted at lower drift rates in

the five-minute block compared to the one-minute block, M1min

= .104, M5min

= .082,

F (1, 9) = 3.53, p = .09, Cohen

Õ
sf = .66. This result indicates that a di�erence in

performance between blocks may not be due to a change in the speed-accuracy tradeo�

policy of the subject, but that trials in the five-minute block are in some sense harder than

corresponding trials in the one-minute block, despite using identical stimuli. A plausible

explanation for this e�ect is fatigue, which leads to a decrease in vigilance (i.e.,

inattention) during longer blocks. This is a novel e�ect not previously modeled with the
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Figure 5 . Analysis of decision threshold revealed an interaction between trial di�culty and

block length.

di�usion paradigm. This result may have implications for experimental design. Block

lengths for a typical psychology experiment are often arbitrary and usually do not vary

throughout an experiment. Though experimenters frequently choose reasonable block

lengths and incorporate breaks, this result suggests that block length may have a

discernible e�ect on performance even at relatively short durations.

Another question of interest was whether participants selected an appropriate

decision threshold, in accordance with the reward rate maximization theory. For this

analysis, a separate di�usion model was fit to the data in the same manner as above, but

collapsing across block length. Thus for each participant, three drift rates and three

decision thresholds were computed, corresponding to the three di�culty levels in the task.

Optimal thresholds were computed using the procedure in Equation 5, which yields a
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di�erent optimal threshold for each di�culty level. Because incorrect responses were

explicitly penalized, the gain function (Equation 6) was modified to account for this:

G

ú = G(v, a) ≠ (1 ≠ G(v, a)) (8)

Note that this formulation is very similar to the modified reward rate theory tested

by Bogacz et al. (2010) in which errors are implicitly penalized. Unlike that experiment,

errors in the current experiment are penalized explicitly. Thus, the theory becomes a

normative one rather than descriptive one. Additionally, Bogacz et al. (2010) use a free

parameter to weight penalties, whereas the above formulation contains no weighting (i.e.,

no free parameter).

Results are shown in Figure 6 (red circles). It appears that some of the decision

thresholds are close to optimal, but many are not (RMSE = .72, though RMSE = .1 for

five subjects closest to optimal1). In particular, many subjects chose a conservative decision

threshold, high above the optimal value. This strategy results in a higher overall accuracy,

but does not maximize the total number of points gained. This result is somewhat

counter-intuitive, as participants did not receive any feedback with regards to accuracy on

any individual trial, but were informed of the total number of points earned. Thus one

might expect subjects to be more sensitive to points accumulated rather than overall

accuracy. While previous findings suggested that participants do err on the side of accuracy

when choosing a decision threshold, these results are more extreme than those seen

previously. One notable di�erence is that most previous experiments incorporate feedback

(e.g., Bogacz et al., 2010), while the current experiment did not. Feedback may play a

crucial role in allowing subjects to determine their optimal speed-accuracy tradeo� policy.

It may be that subjects simply act conservatively when they are uncertain of their own
1
RMSE was calculated by first collapsing each participant into a single data point, the average of three

decision thresholds. This was done to be consistent with the following analysis and to meet assumptions of

independence between data points.
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performance. This notion is supported by Balci et al. (2011), where decision thresholds

were initially too high, but approached optimal thresholds after prolonged experience with

the task. It is worth noting that despite the lack of feedback, most subjects improved

greatly from after an initial practice session, suggesting that subjects are still able to learn

somewhat in the absence of feedback. However a systematic comparison between feedback

and no-feedback conditions can show the extent to which feedback plays a role in helping

participants adopt an optimal strategy.

Figure 6 . The identity line (solid black) shows perfect correspondence to an optimal

speed-accuracy tradeo� policy. Two theories are compared: red circles indicate a single

threshold for all di�culty levels, whereas green triangles indicate a separate threshold for

each di�culty level. While many of the data points cluster around the identity line, it is

clear that others are far from optimal.

Alternative “optimal” thresholds were also computed using Equation 2, under the
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assumption that subjects might choose a single threshold for all trials, regardless of

di�culty. Thus for each subject, a single decision threshold was estimated rather than

three. The results are shown in Figure 6 (green triangles). When thresholds were computed

in this manner, results were similar to those previously computed (RMSE = .651, though

RMSE = .08 for five subjects closest to optimal). Overall, it is not clear whether there is a

discernible di�erence between the two methods of computing decision thresholds, and thus

it is not clear which strategy participants are adopting. The two strategies make similar

predictions, thus more data may need to be collected in order to discriminate between

them.

Experiment 1

Overview

The pilot experiment found that a block length manipulation led to a vigilance

decrement in performance. Furthermore, a di�usion model analysis suggested this

decrement could be attributed to a decrease in drift rate for longer blocks, perhaps as a

result of decreasing attentional resources. Quantifying vigilance decrements as a change in

drift rate suggests a novel way of interpreting and tracking changes in attention over time.

However these e�ects did not reach statistical significance in the pilot study due to the

small sample size (N=10). The current study is designed to replicate this e�ect and further

explore the connection between the cognitive parameters of the di�usion model and

behavioral changes resulting from a vigilance manipulation.

Furthermore, the pilot study suggested that participants set their decision threshold

conservatively high in the absence of feedback. Limited research has explored the

connection between feedback and di�usion model parameters, despite that feedback is

commonly manipulated in psychological experiments. The current study extends the work

of Starns and Ratcli� (2010) by using a within-subject feedback manipulation to control for

individual di�erences. Additionally, the within-subject manipulation allows an inspection of
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whether feedback simply engages attention (a temporary boost in performance only when

feedback is present), aids in learning (a persistent boost in performance even after feedback

is removed), or both.

Subjects

Forty Rice University undergraduate students (22 female, 18 male) were recruited to

participate in the experiment in exchange for credit towards a course requirement. All

subjects were required to have normal or corrected-to-normal vision. As incentive, three

participants with the best performance were rewarded with $25 each at the completion of

data collection.

Stimuli

Subjects participated in a random dot motion experiment (Britten et al., 1992) using

stimuli generated from the Python psychophysics library VisionEgg (Straw, 2008). On each

trial of the experiment, participants were shown a 300x300 square of 200 moving dots.

Each dot measured 3x3 pixels, had a velocity of 100 pixels per second, and a lifespan of

80ms (i.e., each dot disappeared after 80ms and reappeared in a random location). A small

proportion of dots (known as the coherence level) always moved in a pre-determined

direction (left or right), while the remaining dots move in a random direction; a higher

coherence level makes the task less di�cult. The task of the participant is to determine the

net moving direction of the dots (left or right), and respond accordingly. For the current

experiment, the coherence level was set to .2, indicating that 20% of the dots moved

coherently either to the right or left. Trial di�culty did not vary throughout the

experiment. An inter-stimulus interval of 1s was used between trials, during which a

fixation cross was presented.
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Design

This experiment manipulated feedback and block length on a within-subjects basis.

Some blocks gave participants feedback after each trial to inform them if the trial was

answered correctly, while other blocks contained no feedback. Similarly, some blocks

allowed participants five minutes to correctly answer as many trials as possible, whereas

other blocks allowed participants only one minute.

Feedback order was manipulated between subjects. While all subjects completed both

feedback and no-feedback blocks, half of the subjects received feedback blocks first whereas

the other half of the subjects completed the no-feedback blocks first.

Behavioral analysis looked at the e�ect of these manipulations on response time and

accuracy. Additional modeling analysis examined the e�ect of these manipulations on

di�usion parameters (non-decision time, drift rate, and decision threshold) in order to

interpret any behavioral changes. Lastly, optimal thresholds for each condition were

computed and compared to observed decision thresholds.

Procedure

Participants completed ten minutes worth of practice trials (without feedback) to

become acquainted with the task. Pilot studies indicated that performance improves

rapidly in the first few minutes of the task; this practice block was used to minimize any

practice e�ects.

The remainder of the experiment was divided into two halves. In one half, subjects

received feedback after each trial to indicate whether they answered the trial correctly or

incorrectly. A tone was played after an incorrect answer, but otherwise an incorrect

response was not penalized either explicitly (loss of points) or implicitly (a time delay).

These blocks were counterbalanced across subjects, such that half of the subjects received

the feedback block first, and half received the no-feedback block first.

In each block, subjects completed two five-minute sub-blocks and ten one-minute
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sub-blocks. These sub-blocks were pseudo-randomized to minimize order e�ects, such that

each quarter of the experiment contained one five-minute block and five one-minute blocks.

Participants were instructed to get as many trials correct in the time allotted, and

told that in order to achieve this they must respond both quickly and accurately. These

instructions were emphasized to mitigate any implicit bias the subjects may have with

regard to experimenter demand—i.e., that speed is more important than accuracy or vice

versa.

After each sub-block, participants were told how many points (correctly answered

trials) they earned for that round. This was done after every sub-block in the experiment,

and was not considered part of the “feedback” manipulation. In between sub-blocks,

participants were allowed a short break if they desired, or they were able to continue with

the experiment immediately.

Afterwards, participants completed a short demographic questionnaire containing a

few questions related to their beliefs about their strategy and performance in the task.

Specifically, participants were asked 1) if they felt the block length a�ected their response

time, and 2) if they felt the presence of feedback a�ected their accuracy. At the completion

of the one-hour experiment, participants were told their cumulative score for the

experiment.

Outlier Removal

The data were filtered for outliers prior to data analysis. Following Donkin, Averell,

Brown, and Heathcote (2009), all trials with a response time of less than 180ms or greater

than 10s were removed from the dataset. These trials were excluded as they are not often

adequately modeled by the di�usion process. Trials faster than 180ms may indicate eager

motor responses (guesses), whereas trials slower than 10s may indicate prolonged

inattention.

Additionally, six subjects whose accuracy was below 60% (after outlier removal) were
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not included in the analyses. Most participants with accuracy below 60% also had a high

proportion of outlier RTs, and nearly all of the outliers from these subjects were removed

for being fast outliers (0 to 180ms). Of the remaining 34 participants, 1.4% of the trials

were removed as outlier RTs. Fortuitously, half of the remaining subjects received feedback

first, whereas half received feedback second.

Model Fitting

Parameters of the drift di�usion model were fit separately for each participant and

each condition using DMAT (Di�usion Modeling Analysis Toolbox; Vandekerckhove &

Tuerlinckx, 2008, 2007) for MATLAB. Non-decision time, drift rate, and decision threshold

were allowed to vary across all conditions. Starting point was fixed between the two

decision boundaries, which assumes that participants are equally likely to choose rightward

or leftward motion. This decision is justified in that the dots were equally likely to move

rightward or leftward, and responses were rewarded the same regardless of direction of

motion.

The simplified version of the Ratcli� di�usion model was used, meaning between-trial

variability in the parameters (i.e., s

z

, s

v

, and s

ter

in Table 1) was not included in the model.

The primary purpose of this was to be able to calculate and compare optimal thresholds to

observed thresholds. When these parameters are included in the model, an analytic solution

to the calculation of optimal thresholds is no longer possible. Overall, the set of parameters

used was similar to that of the pilot experiment with the exception that non-decision time

was now allowed to vary across blocks. Though the current study’s manipulations were not

expected to a�ect non-decision time, some experimental manipulations have been shown to

a�ect this parameter (Dambacher & Hübner, 2014; Mulder et al., 2013).

A variety of fitting procedures can be used to derive model parameters from

experimental data (Heathcote, Brown, & Mewhort, 2002; Voss & Voss, 2008;

Wagenmakers, van der Maas, Dolan, & Grasman, 2008; Vandekerckhove & Tuerlinckx,
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2007). A comprehensive guide for parameter fitting is available from Ratcli� and

Tuerlinckx (2002), which compares the robustness of several popular parameter fitting

methods. The process used in the current study is described briefly:

The EZ-di�usion model (Wagenmakers et al., 2007) provides a closed-form analytic

solution to fitting a three-parameter di�usion model (drift rate, non-decision time, and

decision threshold) using only error rate, mean response time, and variance in response

time. While the EZ-di�usion fitting procedure has known limitations (Ratcli�, 2008;

Wagenmakers et al., 2008), it is used to provide initial parameter settings for a more robust

fitting procedure.

Using these parameters, a theoretical cumulative distribution function is generated;

that is, a function that relates decision time to the probability that the di�usion process

has terminated (see Ratcli� & Tuerlinckx, 2002, Appendix A). This theoretical distribution

can be compared to the observed distribution using a cost function. Historically, the most

common approach is to divide the distribution into quantiles and compute a chi-square

statistic. Though this approach was favored because it is less computationally demanding

than other approaches, maximum likelihood estimation has become a popular alternative

in recent years (Vandekerckhove & Tuerlinckx, 2007). Though each cost function has

certain advantages and disadvantages, the maximum likelihood method was chosen for the

current set of experiments as it is often adequate and under certain conditions can be the

most accurate method for recovering di�usion parameters (Ratcli� & Tuerlinckx, 2002).

The parameters of the model are then adjusted by small increments using the

SIMPLEX algorithm (Nelder & Mead, 1965) in order to find the parameters that maximize

the likelihood of the data. The search is terminated after a fixed number of iterations or

when a given tolerance is reached. For the current experiments, the default procedure

provided by DMAT was used. After the model parameters for each subject and condition

are derived, di�erences in parameters between conditions can be assessed using traditional

statistical methods (e.g., repeated-measures ANOVA).
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Behavioral Results

Response Time. A linear mixed-e�ect model was used to assess the e�ects of block

length, feedback, and feedback order on response time. Subject and all subject by

within-subject factors (feedback and block length) were treated as random e�ects. This was

achieved using the lme4 and lmerTest packages (Bates, Maechler, Bolker, & Walker, 2014;

Kuznetsova, Bruun Brockho�, & Haubo Bojesen Christensen, 2014) in the R programming

language (R Core Team, 2014). Linear mixed-e�ect models can o�er more power than a

traditional repeated-measures ANOVA analysis, though their use in psychological fields is

nascent. For clarity, the R syntax used here and throughout is provided in Appendix A.2

Overall mean response time did not di�er between subjects who received feedback

first and those who received feedback second (p = .39). As seen in Figure 7, participants

who received feedback in the second half of the experiment did show a decrease in response

time when feedback was introduced (M
fb

= .92s, M

nofb

= 1.23s), while those who received

feedback in the first half of the experiment had similar response times when feedback was

removed (M
fb

= 1.08s, M

nofb

= 1.07s). This feedback by feedback order interaction was

significant (— = .35, SE = .17, t = 2.08, p = .046). Only 47% of subjects who received

feedback first showed a decrease in mean response time with feedback, whereas 88% of

subjects who received feedback second showed a decrease in mean response time.

It is perhaps surprising that feedback produced shorter response times for those

participants who received feedback in the second half of the experiment rather than the

first half. This could be explained as a confluence of feedback and practice e�ects (Dutilh

et al., 2009; Starns & Ratcli�, 2010). Collapsing across conditions, mean response time

decreased steadily across four quarters of the experiment (M
q1 = 1.23s, M

q2 = 1.08s,

M

q3 = 1.02s, M

q4 = 0.96s). Thus, it seems plausible that for those who received feedback
2
A separate analysis was conducted on log transformed response times, to determine if the skewed distri-

bution of response times significantly a�ected the results. All results were qualitatively identical; that is, all

significant e�ects remained significant and all non-significant e�ects remained non-significant.
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Figure 7 . Participants who received feedback first showed little change in response time

when feedback was removed, whereas participants who received feedback second showed a

dramatic decrease in response time when feedback was introduced. Though response times

decreased over time for both groups, the group with feedback had shorter response times in

both the first half (outer bars) and second half (inner bars) of the experiment. Error bars

here and throughout indicate 95% within-subject confidence intervals (Morey, 2008).

second, practice e�ects and feedback worked in conjunction with each other; for those who

received feedback first, the two e�ects are opposed.

More generally, providing feedback after incorrect responses led to a decrease in

response time (M
fb

= 0.99s, M

nofb

= 1.15s, — = ≠.34, SE = .12, t = ≠2.91, p = .007).

Additionally, one-minute blocks produced shorter response times than five-minute blocks

(M1min

= 1.01s, M5min

= 1.13s, — = .28, SE = .048, t = 5.82, p < .001). 67% of subjects

showed a decrease in mean response time with feedback, whereas 91% of subjects showed a
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Figure 8 . Response times were shorter both with feedback and in shorter block lengths.

However feedback appears to have a larger e�ect in the five-minute block compared to the

one-minute block.

decrease in mean response time with a shorter block length.

Feedback resulted in a larger decrease in response time for the five-minute block

compared to the one-minute block (di�erence in means: M5min

= 0.21s, M1min

= 0.1s; see

Figure 8). This feedback by block length interaction was significant (— = ≠.22, SE = .024,

t = 9.03, p < .001). This suggests that the e�ects of feedback and block length are not

linearly additive, perhaps because there is a lower bound on response time.

Lastly, a three-way interaction of feedback, block length, and feedback order was

significant (— = .23, SE = .034, t = 6.81, p < .001), seen in Figure 9. It seems participants

who begin the experiment with feedback show no change in response time when feedback is

removed, but still do show an e�ect of block length. Those participants who start the
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experiment without feedback begin with the slowest response times, but after introducing

feedback these same participants have the fastest response times. An e�ect of block length

appears present everywhere except perhaps during feedback blocks for participants who

receive feedback second (far right in Figure 9).

Figure 9 . A significant three-way interaction of feedback, feedback order, and block length

on response time was detected.

Accuracy. A corresponding linear mixed-e�ect model was used to assess the e�ects

of block length, feedback, and feedback order on accuracy. Subject and all subject by

within-subject factors (feedback and block length) were treated as error terms.

A feedback by feedback order interaction, shown in Figure 10, was nearly significant

(— = ≠.039, SE = .021, t = ≠1.87, p = .069). 41% of participants who received feedback

first had a higher mean accuracy in the feedback blocks, whereas 65% of participants who

received feedback second showed an improvement in accuracy when feedback was
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Figure 10 . Though accuracies improved over time for both groups, the group with feedback

had a higher mean accuracy in both the first half (outer bars) and second half (inner bars)

of the experiment

introduced. Analogous to the response time data, these results could be partially attributed

to practice e�ects in which feedback and practice work in conjunction for those who receive

feedback second, and are opposed for those who receive feedback first. Overall, accuracy

improved slightly with feedback (M
fb

= .829, M

nofb

= .816), however this e�ect was not

quite significant (— = .028, SE = .015, t = 1.92, p = .061). Only 53% of subjects showed an

improvement in accuracy with feedback.

Though the pilot experiment hinted at a main e�ect of block length on accuracy, the

current study provided no support for this hypothesis (p = .48). At first glance, it may

appear that this e�ect is masked by a significant feedback by block length interaction

(— = .023, SE = .011, t = 2.16, p = .031). As seen in Figure 11, mean accuracy is roughly
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Figure 11 . The di�erence in accuracies between the one-minute and five-minute blocks was

significantly larger for no-feedback compared to feedback trials.

1% higher in one-minute compared to five-minute blocks for no-feedback trials. The pilot

experiment did not provide feedback, and thus this would explain the discrepancy; however

a simple e�ects analysis of only no-feedback trials did not support this hypothesis (p = .61).

Lastly, a near-significant three-way interaction between block length, feedback, and

feedback order is present (— = ≠.028, SE = 1.53, t = ≠1.86, p = .063), seen in Figure 12.

Overall, the experimental manipulations (block length, feedback, and feedback order) had

similar e�ects on both response time and accuracy.

Modeling Results

Di�usion model parameters (non-decision time, drift rate, and decision threshold)

were derived for each subject using the methodology described above. Separate parameters
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Figure 12 . A three-way interaction between block length, feedback, and feedback order was

detected.

were calculated for each of the four cells (feedback by block length) in the design. Model

parameters were then compared between conditions using a repeated-measures ANOVA.

Non-decision Time. Non-decision time was allowed to vary across conditions, as

some experiments have found instructional changes to a�ect this parameter (Dambacher &

Hübner, 2014; Mulder et al., 2013). Though non-decision time was not expected to change

with the manipulation of feedback or block length, allowing the parameter to vary and then

assessing a change across conditions is perhaps a more conservative approach. As expected,

however, there were no main e�ects or interactions that a�ected non-decision time.

Drift Rate. A significant interaction between feedback and feedback order was

observed, F (1, 32) = 20.32, MSE = .032, p < .001. Drift rate increased significantly with



36

Figure 13 . Drift rate increased over time for both groups, though the group with feedback

had higher drift rates in both the first half (outer bars) and second half (inner bars) of the

experiment.

feedback for those who received feedback second, but remained relatively constant for those

who received feedback first (Figure 13). 100% of participants who received feedback second

showed an increase in drift rate with feedback, whereas only 52% of those who received

feedback first showed an increase in drift rate during feedback blocks. Collapsing across

feedback order, feedback resulted in a slight increase in drift rate M

fb

= 0.122,

M

nofb

= 0.098, F (1, 32) = 12.98, MSE = .02, p = .001. 76% of subjects showed higher drift

rate during feedback blocks. This suggests that providing feedback may improve one’s

perceptual ability to discriminate between stimulus classes.

Drift rates appeared to be slightly lower in the five-minute compared to one-minute

blocks; however, this e�ect was not quite significant, M1min

= .115, M5min

= .106,
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F (1, 32) = 3.87, MSE = .002, p = .058. 65% of subjects displayed higher drift rates in the

one-minute compared to five-minute blocks.

Figure 14 . Drift rates decreased with longer block lengths, but only for participants who

received feedback first.

Lastly, block length interacted significantly with feedback order, F (1, 32) = 4.37,

MSE = .003, p = .045. Those who received feedback second showed similar drift rates for

the one-minute and five-minute blocks, whereas those who received feedback first had lower

drift rates in the five-minute compared to the one-minute blocks (Figure 14). It is not

immediately clear why this would be the case.

Decision Thresholds. Overall, blocks with feedback resulted in lower decision

thresholds, M

fb

= .187, M

nofb

= .215, F (1, 32) = 4.7, MSE = .028, p = .038. 62% of

subjects showed lower thresholds during feedback compared to no-feedback blocks.

However, this e�ect should be viewed in light of a significant feedback by feedback order
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interaction, F (1, 32) = 4.21, MSE = .025, p = .048 (Figure 15). It appears decision

thresholds are fairly consistent with the exception of participants who have not yet received

any feedback blocks. It seems likely that these participants set their decision threshold

conservatively high in the absence of feedback. For those who received feedback second,

76% of participants showed lower thresholds with feedback. In contrast, only 47% of

participants who received feedback first had lower thresholds during feedback blocks.

Figure 15 . Decision thresholds were similar in all conditions, except for participants who

had not yet done any feedback trials (far left).

Additionally, shorter block length significantly lowered decision thresholds,

M1min

= .188, M5min

= .214, F (1, 32) = 6.99, MSE = .022, p = .013. 76% of subjects

showed lower thresholds in the one-minute compared to five-minute block. This e�ect was

anticipated, but not found in the pilot experiment. It is possible this e�ect was masked by

a significant block length by di�culty interaction in the pilot experiment (Figure 5).
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Figure 16 . Decision thresholds are closest to optimal for feedback and one-minute blocks.

As seen in the feedback first group, removal of feedback did not appear to worsen decision

thresholds.

A more important question is how decision thresholds deviate from optimal

thresholds. Optimal decision thresholds were determined for each subject and condition by

finding the decision threshold that maximizes reward rate (Equation 1) given the obtained

drift rate and non-decision times. This procedure is identical to the “single threshold”

calculations in the pilot experiment, except that the original gain function is used

(Equation 6) rather than a modified gain function (Equation 8) because incorrect answers

were not penalized in this experiment. Deviation scores were then calculated, subtracting

the observed threshold from the optimal threshold for each condition, and subjected to a

repeated-measures ANOVA. Results are shown in Figure 16.

The e�ects of feedback, block length, and feedback order on optimal threshold
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deviations mirror the e�ects on decision threshold just reported. Decision thresholds are

closer to optimal with feedback, F (1, 32) = 5.61, MSE = .045, p = .024. Again, this e�ect

is tempered by a significant interaction between feedback and feedback order,

F (1, 32) = 5.6, MSE = .045, p = .024. Lastly, decision thresholds are closer to optimal in

one-minute compared to five-minute blocks, F (1, 32) = 7.9, MSE = .029, p = .008. These

e�ects on deviation scores happen to mirror the “raw” e�ects on decision threshold because

thresholds are systematically biased: being closer to optimal almost always entailed a

lowering of decision thresholds.

Overall, decision thresholds were furthest from optimal in the no-feedback,

five-minute blocks for participants who received feedback second. Thresholds were closest

to optimal for the same participants in the feedback, one-minute blocks. This further

supports the notion that feedback and shorter block lengths facilitate adoption of a more

optimal speed-accuracy tradeo� policy.

Survey

After completing the experiment, participants were given a survey to assess their

meta-knowledge of their performance. Two participants did not complete the survey. Of

particular interest is whether participants were aware of the e�ect of block length or

feedback on response time and accuracy, respectively.

First, participants were asked: “Do you feel that the block length a�ected the speed

of your response? (i.e., did you respond faster or slower in the one-minute compared to the

five-minute block?)” Ten subjects believed their response time did not di�er by block

length, though response time actually decreased for all ten. Twenty-two subjects believed

that block length did have an e�ect on response time, and response time decreased for

nineteen of them.

Response time analyses were re-run after dividing the data into two groups: those

who believed block length had an e�ect on their response time, and those who did not.
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However, the significance of all main e�ects and interactions involving block length did not

di�er between the two groups. In particular, a main e�ect of block length, an interaction of

block length and feedback, and a three-way interaction of block length, feedback, and

feedback order were all significant in both groups. These e�ects are the same as those

reported initially. Thus, it seems that while a majority of participants (59%) correctly

inferred that block length a�ected their response time, performance did not di�er between

participants who were or were not aware of this. Note that the wording of the question is

ambiguous in that it is non-directional: participants could answer “yes” regardless of the

whether they believed a shorter block length increased or decreased their response time. A

more nuanced analysis could examine whether participants correctly inferred whether their

response time di�ered significantly regardless of direction. Such an analysis, which might

require a separate significance test for each subject, seems unlikely given the overwhelming

tendency for participants to have shorter response times in the one-minute block.

Additionally, participants were asked: “Do you feel you were more accurate in the

blocks that provided feedback?” Nine participants believed that their accuracy did not

improve with feedback, of which accuracy improved for five (i.e., 44% were correct).

Twenty-three people believed that their accuracy did improve with feedback, and eleven of

them were correct (i.e., 47% were correct). Again, the data were divided into two groups

based on their responses and accuracy analyses were re-run. At face value, it appears that

subjects who responded “yes” correctly inferred that feedback had a positive e�ect on

accuracy (p = .008) whereas feedback had no e�ect for those who responded “no”

(p = .37). However in light of the tabulation above, it seems this e�ect is likely driven by

the magnitude of the performance increase for some subjects compared to others. Overall,

it seems participants are not well-calibrated when it comes to their meta-knowledge of

whether feedback improves performance.
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Discussion

A summary of the main e�ects found in the experiment are presented in Table 2.

Feedback appeared to both increase drift rate and lower decision thresholds. Both of these

factors explain why response times are lower for feedback blocks, whereas an increase in

drift rate explains why accuracy is higher for feedback blocks.

Table 2

Summary of Main E�ects from Experiment 1

IV RT Accuracy Drift Rate Decision Threshold

1-minute (c.f. 5-minute) ¿ – ø¶ ¿

Feedback (c.f. no-feedback) ¿ ø¶ ø ¿

Feedback first (c.f. feedback second) – – – –

Note. The direction of each main e�ect is indicated by an arrow.
¶

.05 < p < .07

Practice appears to increase drift rate throughout the experiment. Participants who

receive feedback second start the experiment with the lowest drift rates and highest

decision thresholds, resulting in the highest response times yet lowest accuracies. However,

because these participants receive feedback in the second half of the experiment, working in

confluence with practice e�ects, they end up with the highest drift rates, thus resulting in

the lowest response times and highest accuracies. In contrast, practice appears to have

little or no influence on decision thresholds over the one-hour time period tested. That is,

participants naturally become better at discriminating between stimulus classes with

practice (higher drift rate) but do not appear to lower their decision threshold significantly

simply because of experience.

The feedback order manipulation demonstrates how cognitive parameters and

behavior can be a�ected by feedback, but do not necessarily depend on the continuing
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presence of feedback. Decision thresholds were set conservatively high for participants who

had no experience with feedback trials and thus had no internal barometer for assessing

their own performance. Feedback enabled participants to select a more appropriate decision

threshold, but continued feedback was not necessary to maintain this decision threshold. In

a sense, the decision threshold is learned during the feedback phase. In contrast, it is not

clear whether continued feedback is necessary to maintain drift rate levels, though actively

providing feedback certainly increases drift rates.

The pilot experiment hinted at an increase in accuracy and decrease in response time

for one-minute blocks compared to five-minute blocks, though neither e�ect was significant.

The current study confirmed that response times decrease with shorter block lengths, but

no change in accuracy was detected. As with feedback, this decrease in response time is

explained by both an increase in drift rate and a decrease in decision threshold for

one-minute compared to five-minute blocks.

Overall, both feedback and shorter block length had qualitatively similar e�ects on

response time, drift rate, and decision threshold. However these e�ects were not displayed

consistently across subjects. Table 3 summarizes the percentage of subjects who show an

e�ect in the correct direction for all significant e�ects.

Table 3

Percentage of Subjects Showing a Main E�ect in the Correct Direction

IV RT Accuracy Drift Rate Decision Threshold

1-minute (c.f. 5-minute) 91% – 65% 76%

Feedback (c.f. no-feedback) 67%
(47/88)

53%
(41/65)

76%
(52/100)

62%
(47/76)

Note. Numbers in parentheses indicate percentages for subjects who received feed-

back first or second, respectively.
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Finally, both feedback and shorter block lengths pushed decision thresholds closer to

optimal levels. Subjects showed a systematic bias for caution when initially setting their

decision threshold, as expected from previous studies (Holmes & Cohen, 2014). The aim of

the present study di�ers from many previous studies, in that it is not meant to posit an

alternative account of why participants choose a given threshold (for example, maximizing

a weighted combination of reward rate and accuracy). Rather, the current study describes

how the experimental manipulations facilitate the adoption of a more optimal

speed-accuracy tradeo� policy given a true normative model. While it is clear from

previous research that humans deviate from this normative policy, understanding factors

that edge us closer to optimality may be important for both experimental design and for

designing interventions in real-world applications.

Experiment 2

Overview

Optimal foraging theory suggests that the optimal decision threshold depends not

only on the speed-accuracy tradeo� function of the current trial, but on the tradeo�

function of other trials as well. In the case where di�culty does not vary across trials, such

as in Experiment 1, each trial’s tradeo� function is relatively identical. However when

di�culty varies across trials, di�erent trial types now have unique tradeo� functions. Thus,

a separate decision threshold should be computed for each level of di�culty, and these

thresholds should depend on each other. The pilot study hinted at a di�erence in decision

threshold by trial di�culty under certain conditions, however no clear pattern emerged.

The current experiment tests this theory under more constrained conditions (two

di�culties instead of three) and with a larger sample size.

Moreover, optimal foraging theory suggests that we should only choose separate

decision thresholds when it is possible to identify trials as belonging to a specific type, and

thus identify its speed-accuracy tradeo� function (Stephens & Krebs, 1987). This raises the
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possibility of another manipulation: subjects may be more likely to adopt separate decision

thresholds for di�erent trial di�culties when they are made explicitly aware of a trial’s

di�culty.

Thus, the current experiment examines the di�erences in performance that result

from varying trial di�culty within a block, in addition to varying a subject’s knowledge of

trial di�culty.

Subjects

Twenty-nine subjects (18 female, 11 male) were recruited in the same manner as

Experiment 1. The experiment consisted of three one-hour sessions over the course of a

week. Participants were incentivized by o�ering $25 to the top performer at each session.

This was done to motivate participants each session, even if they felt their performance was

sub-par on previous sessions.

Stimuli

Stimuli were generated using the same method as Experiment 1. Two di�culty levels

were used: easy trials (0.25 coherence) and hard trials (0.2 coherence). Additionally, the

inter-stimulus interval was extended to 1.5s (from 1s) in order to allow participants time to

assess and react to the pre-cue before a trial began. The fixation cross presented during the

inter-stimulus interval was colored either green (easy trial), red (hard trial), or white (easy

or hard trial).

Design

This experiment manipulated variability in trial di�culty (block type) and

foreknowledge of task di�culty (pre-cue) on a within-subjects basis. Static blocks consisted

entirely of a single di�culty (hard or easy), whereas mixed blocks contained trials of

varying di�culties (hard and easy). Additionally, in some blocks trial di�culty was labeled



46

using a pre-cue (by coloring the fixation cross), whereas in other blocks participants were

not informed of trial di�culty.

Analysis looked at the e�ect of these manipulations on response time and accuracy.

Additional analysis looked at the e�ects on di�usion parameters (non-decision time, drift

rate, and decision threshold) to explain these behavioral changes. Lastly, optimal

thresholds were computed in order to assess how the experimental manipulations a�ected

participant’s speed-accuracy tradeo� policy during mixed blocks.

Procedure

The procedure was similar to that of Experiment 1. In each experimental session,

subjects completed a ten minute practice block (mixed, pre-cue) to become acquainted

with the task. The remainder of the experiment was divided into eight five-minute blocks.

Half of these blocks used a pre-cue to label trial di�culty by coloring a pre-trial

fixation cross green or red. The other half of the blocks used a white fixation cross, so that

participants were unaware of the trial di�culty (no pre-cue). Additionally, block type was

manipulated such that half of the blocks contained both easy and hard trials interspersed

(mixed block), whereas half contained only a single di�culty level (static block). The eight

blocks were pseudo-randomized such that participants received all four possible

combinations (block type by pre-cue) in each experimental half.

Participants received feedback after an incorrect trial in the form of tone. After each

block, participants were informed of their score for that block.

This experiment was conducted over three one-hour sessions. At the completion of

each session, participants were told their score for that day. All three sessions were

scheduled to occur within a timespan of approximately one week.

Outlier Removal

The data were filtered for outliers using the same procedure as Experiment 1. Three

subjects whose total accuracy was below 60% were removed from the dataset entirely. Of
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the remaining 26 subjects, only 0.2% of trials were removed for being outlier response times.

Model Fitting

Di�usion model parameters were derived in a manner identical to that of Experiment

1. Non-decision time, drift rate, and decision threshold were free to vary across all possible

conditions, as well as between sessions.

Behavioral Results

Di�culty and Session. Two separate linear mixed-e�ect models were fit using

response time and accuracy as the dependent variables. Subject and all subject by

within-subject factors (coherence, block type, session, and pre-cue) were treated as random

e�ects.3

A limitation of linear mixed-e�ect models is that there is no omnibus test for factors

with more than two levels. Session, being a ternary variable, was broken down into two

factors: a contrast representing session 1 vs. session 2 (henceforth session 2 ), and a

contrast representing session 1 vs. session 3 (henceforth session 3 ).

As expected, there was a main e�ect of di�culty level on both response time

(M
easy

= 0.80s, M

hard

= 0.88s, — = ≠.193, SE = .024, t = 8.11, p < .001) and accuracy

(M
easy

= .889, M

hard

= .861, — = .02, SE = .008, t = 2.45, p = .016). 100% of participants

were more accurate in easy trials and 88% of participants had shorter response times for

easier trials. Additionally, response times appeared to decrease steadily by session

(M
session1 = 1.0s, M

session2 = 0.83s, M

session3 = 0.71s). Main e�ects of session 2

(— = ≠.227, SE = .065, t = 3.5, p = .001) and session 3 (— = ≠.347, SE = .065, t = 5.53,

p < .001) were significant. Response time was also moderated by a significant interaction of

di�culty level and session 2 (— = .11, SE = .024, t = 4.59, p < .001) and session 3

(— = .139, SE = .024, t = 5.87, p < .001). See Figure 17.
3
As with Experiment 1, an analysis was also performed on log transformed response time. Results were

very similar, and di�erences are noted throughout.
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Figure 17 . Response times were always higher for hard trials, though the di�erence in

response times for hard and easy trials is largest in Session 1. Note that in this graph and

all subsequent response time graphs, the y-axis is zoomed to illustrate small e�ects.

Block type. The main research question in this experiment it whether participants

treat trials di�erently depending on whether they are in a block of the same di�culty

(static block) or varying di�culties (mixed block).

As shown in Figure 18 and Figure 19, there were numerous interactions involving

block type, including block type by session 3 on accuracy (— = .031, SE = .011, t = 2.75,

p = .006) and response time (— = ≠.088, SE = .024, t = 3.69, p < .001). An interaction for

block type by session 2 was significant for response time (— = ≠.069, SE = .024, t = 2.84,

p = .005), but not accuracy (p = .75). Other interactions for response time include block

type by di�culty (— = .087, SE = .025, t = 3.55, p < .001) and a three-way interaction of

block type, session 3, and di�culty (— = ≠.095, SE = .034, t = 2.83, p < .001).
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Figure 18 . Accuracies initially appear higher for static compared to mixed blocks, but this

pattern is not present in the third session. Note that in this graph and all subsequent

accuracy graphs, the y-axis is zoomed to illustrate small e�ects.

Overall, there was a main e�ect of block type on both response time

(M
mixed

= 0.847s, M

static

= .839s, — = .069, SE = .022, t = 3.1, p = .002) and accuracy

(M
mixed

= .874, M

static

= .877, — = ≠.02, SE = .008, t = 2.3, p = .02). These are very

small e�ects.

Despite statistical significance, all of the e�ects involving block type are of very small

magnitude and so should be interpreted with caution. It appears that initially, accuracy is

higher and response times are lower for static compared to mixed blocks. However both of

these e�ects are absent or reversed by the third session.

Pre-cue. Pre-cue had a significant e�ect on accuracy (M
precue

= .874,

M

noprecue

= .876, — = ≠.02, SE = .009, t = 2.28, p = .023), but had no e�ect on response
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Figure 19 . Response times initially appear lower for static compared to mixed blocks, but

this pattern is attenuated or reversed by the third session

time (p = .81). This is a very small e�ect. Note that a main e�ect of pre-cue might not be

expected, as half of the blocks that contained a pre-cue were of a static di�culty where this

cue is not as informative. Instead, one might expect a pre-cue to have an e�ect on mixed

blocks, but not static blocks. Indeed, there was an interaction between pre-cue and block

type on accuracy (— = .027, SE = .012, t = 2.32, p = .02) and response time (— = ≠.07,

SE = .025, t = 2.81, p = .005). See Figure 20 and Figure 21.

Additionally, there are numerous interactions involving pre-cue. A pre-cue by

di�culty level interaction was significant for both accuracy (— = .023, SE = .011, t = 2.04,

p = .04) and response time (— = .049, SE = .024, t = 2.01, p = .045). A pre-cue by session

3 interaction was also significant for accuracy (— = .022, SE = .011, t = 1.98, p = .047)
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Figure 20 . ]

Accuracy was a�ected by the presence of a pre-cue, but numerous interactions made this

relationship complex.

and response time (— = .049, SE = .024, t = 2.05, p = .04)4.

Finally, numerous three- and four-way interactions involving pre-cue were significant.

For clarity, only p-values are listed, though full statistics are available in the Appendix B.

The list of interactions includes: pre-cue by block type by di�culty on accuracy (p = .021),

pre-cue by block type by session 3 on accuracy (p = .025), pre-cue by di�culty by session 3

on response time (p = .007)5, pre-cue by session 2 by block type on response time

(p = .027), and pre-cue by di�culty by session 3 by block type on response time (p = .03)6.

Due to the number of interactions, these e�ects are di�cult to interpret. Generally,
4
Not-significant with log transformed data, p = .155

5
Nearly significant with log transformed data, p = .068

6
Not-significant with log transformed data, p = .236
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Figure 21 . Response time was a�ected by the presence of a pre-cue, but numerous

interactions made this relationship complex.

interactions of pre-cue and session could illustrate an attenuation or reversal of direction

over time. In session 1, pre-cue resulted in lower response times (M
diff

= ≠0.018) and

lower accuracies (M
diff

= ≠0.004), but in session 3 pre-cue resulted in higher response

times (M
diff

= 0.018) and higher accuracies (M
diff

= 0.003).

Modeling Results

Di�usion model parameters (non-decision time, drift rate, and decision threshold)

were derived for each subject using same methodology as Experiment 1. Separate

parameters were calculated for each of cells in the design (session by block type by pre-cue

by di�culty). Model parameters were then compared between conditions using a

repeated-measures ANOVA.
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Non-decision time. Contrary to expectations, a significant interaction of session by

block type a�ected non-decision time, F (2, 50) = 3.63, MSE = .028, p = .034. Because this

pattern is inconsistent across sessions (Figure 22), it is not clear what this e�ect means or

if it is a spurious e�ect.

Figure 22 . Static blocks appeared to have a consistent non-decision time over all sessions,

whereas non-decision time in mixed blocks appeared to vary by session.

Drift rate. As expected, drift rate was significantly higher for easy (M = .171)

compared to hard (M = .128) trials, F (1, 25) = 97.69, MSE = .285, p < .001. In addition,

drift rates appeared to increase steadily across sessions, M

session1 = .123, M

session2 = .141,

M

session3 = .184, F (2, 50) = 6.83, MSE = .201, p = .002.

A significant session by block type interaction was found as well, F (2, 50) = 4.63,

MSE = .016, p = .014. It appears drift rates are initially lower in mixed compared to

static blocks, but this pattern is attenuated or reversed by the third session (Figure 23).
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Figure 23 . Drift rates were initially lower in mixed compared to static blocks, but this

e�ect is reversed by the third session.

Decision threshold. Decision thresholds appear to decrease across sessions,

M

session1 = .202, M

session2 = .164, M

session3 = .145, F (2, 50) = 14.75, MSE = 0.17,

p < .001. Additionally, decision thresholds were slightly higher in blocks without a pre-cue

(M
precue

= .168, M

noprecue

= .173), however this e�ect was not quite significant,

F (1, 25) = 3.67, MSE = .003, p = .067. Contrary to expectations, there were no main

e�ects or interactions involving block type that a�ected decision threshold.

Optimal thresholds were computed for each session by pre-cue condition, but for the

mixed blocks only, using Equation 4. This equation predicts a separate threshold for hard

and easy trials. As with Experiment 1, participant thresholds were consistently set above

optimal threshold levels. 78% of thresholds were above optimal (RMSE = .1), though this

declined over the course of three sessions from 87% in session 1 (RMSE = .149), to 77% in
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session 2 (RMSE = .08), to 71% in session 3 (RMSE = .067).

It was hypothesized that participants might engage in a compensatory strategy for

mixed blocks. The normative strategy outlined in Equation 4 allows one to trade o�

between trial types, for instance responding more quickly on hard trials in order to be

presented easier trials. A non-compensatory strategy entails using a single threshold for

both hard and easy trials within a block, whereas a compensatory strategy entails setting a

separate threshold for each trial di�culty: one higher than the threshold predicted by the

non-compensatory model, and one lower. In some sense, a higher decision threshold is an

indication of preference for that trial type, though this preference may vary across subjects,

session, or condition as the drift rates evolve. A qualitative test of this hypothesis was

performed by examining which threshold was set higher (easy or hard trials) for each

condition and comparing the predictions from Equation 4.

Results were not promising. Participant preferences for hard or easy trials matched

predictions in only 75 of 156 (48%) of cases, suggesting that participants do not trade o�

between trial types optimally. At the group level, 90 of 156 (58%) of the predicted

thresholds showed a preference for easy trials, ‰

2(1, n = 156) = 3.69, p = .055. Collapsing

across subject and condition, observed thresholds also showed a slight preference for easy

trials (85 of 156), but this result was not significant, ‰

2(1, n = 156) = 1.126, p = .26.

Discussion

The main research hypothesis in this experiment is that participants use a

compensatory strategy in which they modulate their decision threshold based on the

di�culty of other trials within the block. There did not appear to be much evidence in

favor of this hypothesis. Analysis of decision thresholds found no significant main e�ect or

interactions involving block type, suggesting participants do not modulate their decision

threshold depending on the variability of trial di�culty in a block. Further, using a

compensatory strategy one might expect accuracy in a mixed block to go up for one trial
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type and down for another relative to a static block; similarly, response time should

decrease for one trial type and increase for another. Thus it was unexpected that the e�ects

of block type are in the same direction for both hard and easy trials. That is, accuracy was

initially higher for both hard and easy trials, and similarly response times were initially

lower for both di�culty levels in the mixed compared to static blocks.

Surprisingly, performance in mixed blocks su�ered compared to static blocks. Having

ruled out changes in decision thresholds, it is not immediately clear why this is the case. If

mixed blocks incurred switch costs between trial types, one might expect an overall higher

non-decision time for mixed compared to static blocks, but this is not the case. The

behavioral results may be due to a decrease in drift for mixed blocks, as the overall trend in

drift rate matches that of accuracy and response time. Recent evidence suggests that when

the prior probability of motion direction is unequal and the quality of sensory evidence is

variable (i.e., blocks of mixed di�culty), drift rates are biased towards the favored prior

(Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011; Moran, in press). Although trials in the

current experiment had equal prior probability of leftward and rightward motion, mixed

blocks may have similarly caused uncertainty about the quality in sensory evidence, leading

participants to weight sensory evidence less and result in lower drift rates.

One possible explanation is that subjects have di�culty engaging in a compensatory

strategy because it requires additional cognitive computations that may be costly.

Specifically, in order to adjust one’s decision threshold between hard and easy trials, one

must be able to recognize a trial as di�cult or hard prior to making a response. As

response times in this task are quite short, it may be more convenient to simply adopt a

single threshold for the entire block. In contrast, providing a pre-cue reduces the

complexity of this computation. If participants are capable of calculating and maintaining

distinct tradeo� policies for trials of di�erent di�culties, the task is now simply akin to a

lookup table: set a decision threshold based on the color of the pre-cue.

Despite a main e�ect and numerous interactions, it did not appear that pre-cue had a
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positive e�ect on performance, and may have even impaired performance. Perhaps

presenting a pre-cue made participants feel more confident in their ability, leading them to

set lower decision thresholds. Alternatively, participants may have felt an experimental

demand to alter their strategy dependent on trial type; an ine�ective strategy may lead to

performance decrements. Anecdotal evidence supports this notion of experimental demand,

as one participant commented after his third session that initially he treated trial types

di�erently, but ultimately found it easier to ignore the pre-cue.

Overall, the very small magnitude of these e�ects, combined with the observation

that performance decrements were absent by the third session, suggest that researchers

should not be particularly worried about within-block variability of trial di�culty and

pre-cues a�ecting performance. It is unlikely that these changes in experimental design will

overshadow any intended e�ects from other experimental manipulations.

Conclusion

Previous research has shown a failure to optimize speed-accuracy tradeo�s in a

variety of laboratory tasks (Holmes & Cohen, 2014). Many explanations for these failures

have been proposed, which vary between suggestions that we optimize reward rate given

limitations in our cognitive ability (e.g., Zacksenhouse et al., 2010) or that we are

optimizing some quantity other than reward rate (e.g., Bogacz et al., 2010).

Experiment 1 uncovered two factors, feedback and shorter block length, that helped

participants set decision thresholds closer to optimal. Additionally, feedback had a lasting

e�ect on decision thresholds; after feedback was removed, decision thresholds changed very

little. Feedback also helped improve perceptual discriminability, through an increase in

drift rate.

Shorter block length also enhanced perceptual discriminability. The most likely

explanation for this is a fatigue or inattention e�ect, in which performance decreases over

the length of the block. Indeed, it is often assumed that drift is influenced not only by



58

perceptual abilities but also attentional processes (e.g., Liu, Holmes, & Cohen, 2008).

Di�usion models may be a useful and novel method for studying fatigue and vigilance,

perhaps by tracking drift rate throughout a block. Future studies could use a time-shifting

block (à la a moving average) to calculate di�usion parameters and generate psychometric

curves to track performance over time.

This explanation may seem paradoxical in that drift rate increases with practice, yet

decreases over a continuous block. After all, participants were not required to take a

significant break between blocks. However, vigilance research has shown that performance

in a monotonous task may decrease over time, yet remain high if one includes a single

attention-grabbing trial amidst thousands (Veksler & Gray, 2008). While participants often

spent no more than a minute or so between blocks, this may be su�cient to revitalize

participants and provide a performance boost.

Overall, the results of Experiment 1 have important methodological implications. A

plethora of popular psychological experiments allow subjects to make speed-accuracy

tradeo�s (e.g., reaction time tasks, go-no/go tasks, lexical decision tasks, picture word

interference tasks, implicit association tasks, random dot motion tasks, stroop tasks, cueing

tasks, and signal detection tasks). Researchers should be aware of how feedback and block

length can influence performance in order to compare and contrast studies that allow for

these tradeo�s. Additionally, analysis of behavioral data using a sequential sampling model

such as the Ratcli� di�usion model is strongly encouraged as a supplement to traditional

analyses on response time and accuracy.

The results also suggest ways to improve performance in real-world tasks that allow

for speed-accuracy tradeo�s, and particularly in repetitive tasks that involve signal

detection, such as assembly line quality control, mail sorting, baggage screening, or chicken

sexing (Biederman & Shi�rar, 1987). Workers should undergo training in an environment

that provides feedback, and continue to utilize feedback on the job whenever possible.

Additionally, frequent breaks are highly encouraged to sustain performance, even if these
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breaks are very short in duration. This is consistent with the vigilance literature, which

suggests that perceptual sensitivity in a signal detection task may decline over time, but

brief mental breaks are enough to combat a decline in performance (Ariga & Lleras, 2011).

Experiment 2 tested the hypothesis that people use a compensatory strategy to

optimize across di�erent trial types. While there is some evidence that participants perform

di�erently in mixed compared to static blocks, it does not appear to be the result of

optimization. If anything, mixing trial types appears to have a detrimental e�ect on

performance, though the reasons why are still unclear. This would suggest that

performance is best when participants complete a repetition of identical trials.

Like Balci et al. (2011), Experiment 2 showed no evidence of adjustments in decision

threshold across blocks of varying di�culty. It is worth noting that the compensatory

strategy tested in Experiment 2 is borrowed from optimal foraging theory (Charnov, 1976),

in which animals decide how long to forage in a patch of food—a domain in which animals

are task experts. Perhaps humans may still show evidence of a compensatory strategy in

other, highly practiced decision-making tasks. It is interesting that participants in a word

naming task show response times and accuracies indicative of an ability to change decision

thresholds across block type (Lupker et al., 1997). Arguably, word naming is a highly

practiced task compared to the more artificial random dot motion task. Future studies

could examine whether performance is similar across a more diverse set of tasks.

Though participants do not show evidence of shifting decision thresholds, response

time and accuracy do appear to di�er depending on block type. Analysis of di�usion

parameters indicated that these behavioral di�erences are ostensibly driven by changes in

drift rate and non-decision time, though a conclusive explanation for why block type

influences these parameters is still elusive. One possible limitation of the current study is

that a linear mixed-e�ect model was used to analyze behavior, whereas a

repeated-measures ANOVA was used to analyze di�usion parameters. The former is a more

powerful test as it can include every trial in the regression, and thus detect very small
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di�erences in accuracy and response time. In contrast, only one set of di�usion parameters

can be generated per condition, thus dramatically reducing the number of data points to

be used in analysis. This negates a major benefit of using linear mixed-e�ect models in the

first place, and thus a traditional repeated-measures ANOVA was used instead. With fewer

data points the test is less powerful, thus providing an incomplete picture of the cognitive

mechanisms driving behavioral changes in the study.

Yet another alternative is that the set of parameters used to model performance in

Experiment 2 is simply not adequate to account for subject performance. In particular, the

between-trial variability in drift rate parameter (s
v

) was excluded from the model in order

to calculate optimal decision thresholds; however, it is plausible that variability in drift

rate is another factor influencing behavior in mixed blocks. The preceding analysis

identified a drift rate and decision threshold for each di�culty level; as the coherence rate

for a particular di�culty level is constant, setting between-trial variability in drift rate to

zero may be an adequate assumption. If, however, trials within a block are best modeled by

a single decision threshold (as observed), signal quality could instead be modeled using a

single mean drift rate and variability in drift rate, rather than two discrete drift rates.

Overall, the current set of experiments directly advances our knowledge of how

humans make simple binary decisions. In addition to methodological and real-world

implications, the results add to a growing body of literature focused on optimality in

sequential sampling models. All four proposed factors—feedback, block length, variability

of trial di�culty, and foreknowledge of task di�culty—had discernible e�ects on subject

performance. These insights provide new pieces to the puzzle that will help guide future

research and modeling e�orts.
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Appendix A

R code

All R code for linear mixed-e�ect models is presented in this Appendix.

Experiment 1:

lmer(rt ~ fb*blocklength*fborder + (1|subj) + (1|fb:subj) +

(1|blocklength:subj),data=data)

lmer(correct ~ fb*blocklength*fborder + (1|subj) + (1|fb:subj) +

(1|blocklength:subj),data=data)

Experiment 2:

lmer(rt ~ precue*coherence*session*blocktype + (1|subj) +

(1|precue:subj) + (1|coherence:subj) + (1|session:subj) +

(1|blocktype:subj),data=data)

lmer(correct ~ precue*coherence*session*blocktype + (1|subj) +

(1| precue:subj) + (1|coherence:subj) + (1|session:subj) +

(1|blocktype:subj),data=data)
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Appendix B

Table of results

Table B1

Experiment 1: E�ects on Response Time

Factor — Std. Error df t p

(Intercept) 1.324e+00 1.636e-01 4.300e+01 8.091 3.48e-10 ***

fb -3.418e-01 1.175e-01 3.200e+01 -2.908 0.00651 **

blocklength 2.768e-01 4.759e-02 3.600e+01 5.817 1.24e-06 ***

fborder -1.993e-01 2.313e-01 4.300e+01 -0.861 0.39382

fb:blocklength -2.160e-01 2.392e-02 3.758e+04 -9.032 < 2e-16 ***

fb:fborder 3.451e-01 1.662e-01 3.200e+01 2.076 0.04590 *

blocklength:fborder -7.247e-02 6.722e-02 3.600e+01 -1.078 0.28821

fb:blocklength:fborder 2.321e-01 3.410e-02 3.758e+04 6.807 1.01e-11 ***

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B2

Experiment 1: E�ects on Accuracy

Factor — Std. Error df t p

(Intercept) 8.105e-01 2.466e-02 4.000e+01 32.863 <2e-16 ***

fb 2.831e-02 1.471e-02 4.200e+01 1.924 0.0612 .

blocklength -5.695e-03 8.125e-03 1.020e+02 -0.701 0.4849

fborder 1.862e-02 3.486e-02 4.000e+01 0.534 0.5963

fb:blocklength 2.315e-02 1.070e-02 3.472e+04 2.163 0.0306 *

fb:fborder -3.897e-02 2.084e-02 4.200e+01 -1.870 0.0685 .

blocklength:fborder -1.087e-02 1.138e-02 9.900e+01 -0.955 0.3418

fb:blocklength:fborder -2.835e-02 1.528e-02 3.573e+04 -1.856 0.0634 .

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.

Table B3

Experiment 1: E�ects on Decision Threshold

Factor df SS MSE F p

fb 1 0.02805 0.028048 4.696 0.0378 *

blocklength 1 0.02236 0.022357 6.994 0.0126 *

fborder 1 0.0234 0.02335 0.656 0.424

fb:blocklength 1 0.00294 0.002940 0.948 0.338

fb:fborder 1 0.02516 0.025162 4.212 0.0484 *

blocklength:fborder 1 0.00372 0.003718 1.163 0.2889

fb:blocklength:fborder 1 0.00206 0.002062 0.664 0.421

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B4

Experiment 1: E�ects on Drift Rate

Factor df SS MSE F p

fb 1 0.02026 0.02026 12.98 0.00105 **

blocklength 1 0.002535 0.002535 3.870 0.0579 .

fborder 1 0.0088 0.008765 0.627 0.434

fb:blocklength 1 0.00216 0.0021626 2.179 0.150

fb:fborder 1 0.03172 0.03172 20.32 8.24e-05 ***

blocklength:fborder 1 0.002860 0.002860 4.367 0.0447 *

fb:blocklength:fborder 1 0.00166 0.0016566 1.669 0.206

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.

Table B5

Experiment 1: E�ects on Non-decision Time

Factor df SS MSE F p

fb 1 0.0000 0.000006 0.000 0.987

blocklength 1 0.00257 0.002569 0.558 0.461

fborder 1 0.0235 0.02349 0.881 0.355

fb:blocklength 1 0.00133 0.001326 0.226 0.638

fb:fborder 1 0.0024 0.002449 0.107 0.745

blocklength:fborder 1 0.00414 0.004137 0.899 0.350

fb:blocklength:fborder 1 0.00292 0.002918 0.498 0.486

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B6

Experiment 1: E�ects on Deviation from Optimal Threshold

Factor df SS MSE F p

fb 1 0.04521 0.04521 5.612 0.0240 *

blocklength 1 0.02890 0.028902 7.895 0.00839 **

fborder 1 0.0177 0.01772 0.367 0.549

fb:blocklength 1 0.00350 0.003503 0.922 0.344

fb:fborder 1 0.04511 0.04511 5.598 0.0242 *

blocklength:fborder 1 0.00221 0.002213 0.604 0.44260

fb:blocklength:fborder 1 0.00311 0.003109 0.818 0.372

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B7

Experiment 2: E�ects on Response Time

Factor — Std. Error df t p

(Intercept) 1.108e+00 5.929e-02 6.800e+01 18.694 < 2e-16 ***

precue 4.837e-03 2.030e-02 2.460e+02 0.238 0.811836

di�culty -1.927e-01 2.377e-02 9.200e+01 -8.109 2.18e-12 ***

session2 -2.271e-01 6.544e-02 5.600e+01 -3.471 0.001001 **

session3 -3.468e-01 6.539e-02 5.600e+01 -5.304 1.97e-06 ***

blocktype 6.873e-02 2.217e-02 1.330e+02 3.101 0.002355 **

precue:di�culty 4.883e-02 2.436e-02 7.876e+04 2.005 0.044958 *

precue:session2 -9.512e-03 2.424e-02 7.876e+04 -0.392 0.694789

precue:session3 4.937e-02 2.410e-02 7.877e+04 2.048 0.040549 *

di�culty:session2 1.097e-01 2.392e-02 7.875e+04 4.586 4.51e-06 ***

di�culty:session3 1.389e-01 2.368e-02 7.875e+04 5.866 4.48e-09 ***

precue:blocktype -6.950e-02 2.468e-02 7.875e+04 -2.816 0.004859 **

di�culty:blocktype 8.712e-02 2.456e-02 7.876e+04 3.547 0.000389 ***

session2:blocktype -6.856e-02 2.414e-02 7.876e+04 -2.840 0.004514 **

session3:blocktype -8.799e-02 2.385e-02 7.876e+04 -3.690 0.000224 ***

precue:di�culty:session2 -1.463e-02 3.388e-02 7.875e+04 -0.432 0.665880

precue:di�culty:session3 -9.062e-02 3.361e-02 7.876e+04 -2.696 0.007020 **

precue:di�culty:blocktype -3.574e-02 3.463e-02 7.876e+04 -1.032 0.30200

precue:session2:blocktype 7.544e-02 3.414e-02 7.875e+04 2.210 0.027137 *

precue:session3:blocktype 1.498e-02 3.385e-02 7.876e+04 0.443 0.658121

di�culty:session2:blocktype -5.151e-02 3.404e-02 7.875e+04 -1.513 0.130283

di�culty:session3:blocktype -9.532e-02 3.361e-02 7.875e+04 -2.836 0.004565 **

precue:di�culty:session2:blocktype 2.484e-03 4.807e-02 7.875e+04 0.052 0.958793

precue:di�culty:session3:blocktype 1.032e-01 4.754e-02 7.876e+04 2.171 0.029953 *

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B8

Experiment 2: E�ects on Accuracy

Factor — Std. Error df t p

(Intercept) 8.637e-01 1.795e-02 4.800e+01 48.112 < 2e-16 ***

precue -1.955e-02 8.594e-03 1.063e+03 -2.275 0.02312 *

di�culty 1.999e-02 8.279e-03 1.657e+03 2.415 0.01585 *

session2 4.542e-04 1.527e-02 8.800e+01 0.030 0.97634

session3 3.622e-03 1.522e-02 8.700e+01 0.238 0.81248

blocktype -2.008e-02 8.650e-03 8.310e+02 -2.322 0.02048 *

precue:di�culty 2.339e-02 1.146e-02 7.878e+04 2.042 0.04117 *

precue:session2 8.057e-03 1.140e-02 7.878e+04 0.707 0.47983

precue:session3 2.248e-02 1.133e-02 7.870e+04 1.983 0.04733 *

di�culty:session2 7.922e-03 1.125e-02 7.877e+04 0.704 0.48130

di�culty:session3 -1.079e-02 1.114e-02 7.875e+04 -0.969 0.33257

precue:blocktype 2.697e-02 1.161e-02 7.878e+04 2.323 0.02017 *

di�culty:blocktype 1.788e-02 1.155e-02 7.879e+04 1.548 0.12168

session2:blocktype 3.524e-03 1.135e-02 7.879e+04 0.310 0.75626

session3:blocktype 3.084e-02 1.121e-02 7.879e+04 2.750 0.00596 **

precue:di�culty:session2 -2.332e-02 1.594e-02 7.877e+04 -1.463 0.14343

precue:di�culty:session3 -5.637e-03 1.581e-02 7.878e+04 -0.357 0.72146

precue:di�culty:blocktype -3.760e-02 1.629e-02 7.879e+04 -2.308 0.02098 *

precue:session2:blocktype -1.233e-02 1.606e-02 7.877e+04 -0.768 0.44261

precue:session3:blocktype -3.558e-02 1.592e-02 7.879e+04 -2.235 0.02543 *

di�culty:session2:blocktype -1.165e-02 1.601e-02 7.878e+04 -0.728 0.46679

di�culty:session3:blocktype 1.455e-04 1.581e-02 7.878e+04 0.009 0.99266

precue:di�culty:session2:blocktype 2.876e-02 2.261e-02 7.878e+04 1.272 0.20345

precue:di�culty:session3:blocktype 1.344e-02 2.236e-02 7.878e+04 0.601 0.54772

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B9

Experiment 2: E�ects on Decision Threshold

Factor df SS MSE F p

precue 1 0.003336 0.003336 3.673 0.0668 .

session 2 0.3469 0.17343 14.75 9.2e-06 ***

blocktype 1 0.00024 0.0002389 0.11 0.743

di�culty 1 0.00113 0.001132 0.738 0.398

precue:session 2 0.00421 0.002106 1.528 0.227

precue:blocktype 1 0.00036 0.000362 0.112 0.741

session:blocktype 2 0.00775 0.003875 1.369 0.264

precue:di�culty 1 0.00003 0.000026 0.012 0.915

session:di�culty 2 0.00257 0.001284 0.894 0.415

blocktype:di�culty 1 0.00390 0.003896 1.722 0.201

precue:session:blocktype 2 0.00051 0.0002553 0.162 0.851

precue:session:di�culty 2 0.00188 0.0009389 0.508 0.605

precue:blocktype:di�culty 1 0.00017 0.0001747 0.126 0.726

session:blocktype:di�culty 2 0.0053 0.002652 1.027 0.365

precue:session:blocktype:di�culty 2 0.00135 0.000677 0.611 0.547

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.



76

Table B10

Experiment 2: E�ects on Drift Rate

Factor df SS MSE F p

precue 1 0.00458 0.004581 1.868 0.184

session 2 0.4026 0.20131 6.829 0.00239 **

blocktype 1 0.00855 0.008553 1.844 0.187

di�culty 1 0.28460 0.28460 97.69 4.05e-10 ***

precue:session 2 0.00592 0.002962 0.876 0.423

precue:blocktype 1 0.00066 0.000660 0.178 0.676

session:blocktype 2 0.03204 0.016021 4.632 0.0143 *

precue:di�culty 1 0.00032 0.0003208 0.227 0.638

session:di�culty 2 0.00005 0.0000245 0.009 0.991

blocktype:di�culty 1 0.00077 0.0007746 0.485 0.493

precue:session:blocktype 2 0.00037 0.000187 0.049 0.952

precue:session:di�culty 2 0.00132 0.0006622 0.386 0.681

precue:blocktype:di�culty 1 0.00222 0.002223 0.989 0.33

session:blocktype:di�culty 2 0.00578 0.002892 1.182 0.315

precue:session:blocktype:di�culty 2 0.00261 0.001305 0.616 0.544

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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Table B11

Experiment 2: E�ects on Non-decision Time

Factor df SS MSE F p

precue 1 0.00077 0.000766 0.101 0.754

session 2 0.1204 0.06022 1.954 0.152

blocktype 1 0.0018 0.001802 0.257 0.617

di�culty 1 0.00146 0.001464 0.371 0.548

precue:session 2 0.00395 0.001977 0.333 0.718

precue:blocktype 1 0.00379 0.003789 0.513 0.481

session:blocktype 2 0.0568 0.028402 3.625 0.0339 *

precue:di�culty 1 0.00032 0.000317 0.058 0.811

session:di�culty 2 0.01187 0.005936 1.285 0.286

blocktype:di�culty 1 0.00131 0.001308 0.265 0.611

precue:session:blocktype 2 0.0039 0.001972 0.284 0.754

precue:session:di�culty 2 0.01249 0.006247 1.533 0.226

precue:blocktype:di�culty 1 0.00211 0.002109 0.625 0.437

session:blocktype:di�culty 2 0.0127 0.006374 0.98 0.382

precue:session:blocktype:di�culty 2 0.00344 0.001720 0.399 0.673

.p < 07.

*
p < .05.

**
p < .01.

***
p < .001.
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