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Overview

 Very Brief Introduction
 Two Experiments, Very Briefly
 ACT-R Model
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Context
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Contention Scheduling Model (CSM)
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This feature is important for a number of reasons, one being that deliberate conscious 

control is often too slow to allow for the speed of many of our skilled behaviors. 

Additionally, trigger conditions can sometimes overwhelm influences from the SAS, as in 

the Stroop task. Perhaps most importantly, Norman and Shallice argue, is that certain 

types of errors seem to indicate that deliberate conscious control is not always required 

for action. In particular, “capture errors” occur when a person begins one task, and 

through inattention and/or distraction switches, before completion of the original task, to 

a new task that is at least as familiar as the original task. Reason and Mycielska (1982) 

documented an example of a capture error in a diary study they conducted. When passing 

through his back porch on the way to get his car out, a subject stopped to put on his 
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Figure 2. The overall system: Vertical and horizontal threads. When attention to particular tasks is required, vertical 

thread activation comes into play. Attention operates upon schemas only through manipulation of activation values, 

increasing the values for desired schemas, decreasing (inhibiting) the values for undesired ones. Motivational variables 

are assumed to play a similar role in the control of activation, but working over longer time periods. To emphasize that 

several tasks are usually active, with the individual components of each task either being simultaneous or overlapping 

in time, this figure shows five different horizontal threads. Some means of selecting the individual schemas at 

appropriate times while providing some form of conflict resolution becomes necessary. The interactions among the 
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Simple Recurrent Network (SRN)
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Each step of processing carries information about the state of the system at the previous 

time step, thus the system is sensitive to temporal context.

Botvinick and Plaut (2004) trace their assumptions concerning task structure back to 

Lashley (1951). In the early 1950’s, researchers often viewed sequential behavior and 

tasks as having a strictly linear structure (Botvinick & Plaut, 2004). Lashley rejected this 

notion and claimed that tasks and behaviors that perform those tasks usually have some 

degree of hierarchical structure, since identical and nearly-identical behaviors are often 

performed in different contexts to perform the same or nearly-same tasks. Any cognitive 

representations of the tasks might not need to assume a hierarchical structure themselves, 

but they must be able to account for task context. A model of human action selection, 

therefore, does not necessarily need to mirror a task’s structure in its own structure – the 

two structures are separate. Indeed, Botvinick and Plaut reject the notion that a cognitive 

representation’s structure must mirror the structure of the thing it represents.

Botvinick and Plaut echo Lashley’s sentiment that some actions appear in multiple 

contexts (e.g., stirring sugar or honey into tea, stirring sugar or cream into coffee: stirring 

is essentially the same). The problem with associationist accounts is that there is no 

forms of selection: Which action? and Which object to act upon?”

Because computational models of action have often dealt with

tasks that do not involve direct physical action on objects (e.g.,

language tasks), they have typically focused only on the first of

these two forms of selection. Thus, a central question facing

models of routine naturalistic action is how objects are identified

as targets for action.

One promising hypothesis in this regard is that targets for action

are specified indexically. That is, actions are directed toward

whatever object is currently at the system’s focus of orientation,

for which orientation can mean the point of visual fixation or, more

generally, the focus of attention. This strategy, otherwise known as

a “deictic” (Agre & Chapman, 1987; Ballard, Hayhoe, Pook, &

Rao, 1997) or “do-it-where-I’m-looking” (Ballard, Hayhoe, Li, &

Whitehead, 1992) strategy, has seen wide application in engineer-

ing and robotics (McCallum, 1996; Whitehead & Ballard, 1990).

More important, it has been proposed as a model for how objects

are selected as targets for action in human behavior (Agre &

Chapman, 1987; Ballard et al., 1997, see also Kosslyn, 1994;

Pylyshyn, 1989; Ullman, 1984).

The three-layer recurrent network architecture described earlier

lends itself naturally to the use of indexical representation. One

need only assume that the input layer, now interpreted as carrying

a representation of the perceived environment, conveys informa-

tion about which object is currently the focus of attention. Units

selected in the model’s output layer, now understood as represent-

ing actions, can be interpreted as directed toward that object. One

potential implementation of this approach is diagrammed in Fig-

ure 3. Here, the input layer contains a segment labeled fixated

object, which specifies the visual features of the object currently at

the focus of visual attention. The units in the output layer corre-

spond to actions to be directed toward this object.

Some actions involve objects not only as targets but also as

instruments or tools. Again following previous deictic models

(e.g., Ballard et al., 1992), we assume that this role is assigned to

whatever object the agent currently has in hand. Accordingly, the

input layer in Figure 3 includes a second portion labeled held

object, which specifies the features of this object. Just as the

fixated object is interpreted as the target for action, the held object

(if any) is interpreted as the implement to be used.

Because, within this framework, actions are directed at whatever

object is currently the focus of attention, selecting a new target for

action necessarily involves shifting that focus to a different object.

To this end, computational models using indexical representations

typically involve not only manipulative actions (actions that in-

volve transformation of the environment) but also perceptual ac-

tions, which serve to reorient to the system toward a new object

(see Whitehead & Ballard, 1990). This can be understood as either

a physical reorientation, such as an ocular saccade, or a covert

change of focus accomplished through attentional adjustments.

Units representing such perceptual actions can be incorporated into

the output layer of the architecture diagrammed in Figure 3, with

each unit representing an action such as “fixate the spoon.”

Given this framework, sequential action on objects takes the

form of a rough alternation between perceptual actions, which

orient the system toward a target object, and manipulative actions,

during which the object is acted on. Evidence for such an alterna-

tion in human behavior has been provided by several studies of

hand–eye coordination (Ballard et al., 1992; Hayhoe, 2000; Land,

Mennie, & Rusted, 1998).

Implementing the Perception–Action Loop

An important aspect of naturalistic sequential action is that each

movement, by altering the environment, can impact the perceptual

input the system receives next. This can be captured in a model by

interposing a functional representation of the environment between

the model’s outputs and its subsequent inputs. The implementation

diagrammed in Figure 3 incorporates such a simulated workspace.

This maintains a representation of the state of various objects in

the environment, updates this in response to each action, and if

appropriate, yields a new input pattern to the layers representing

the objects currently fixated and held.

Modeling Task Acquisition

The focus of the present research is on routine behavior. As

such, we are more concerned with the outcome of learning than

with the learning process itself. Nevertheless, a central claim of the

present account is that experience plays a critical role in shaping

the representations and mechanisms that support sequential behav-

ior. Thus, the issue of learning provides an important part of the

background for the account.

In human behavior, the acquisition of sequential routines can

occur by a variety of means: explicit instruction, trial and error,

problem-solving methods, and so on. Two methods that appear to

be particularly important in everyday life are learning through

prediction and learning with scaffolding. As characterized by

Schank (1982), much of our knowledge about action sequences is

gained through a process of continual prediction making; learning

occurs when our predictions about actions and events turn out to be

erroneous. One instance of such prediction-based learning would

be learning through observation, during which the learner follows

the performance of an individual already familiar with the task and

attempts to predict his or her actions at every step. Scaffolding

Figure 3. Architecture of the overall model. Open arrows indicate that

every unit in the sending layer is connected to every unit in the receiving

layer. (See text for details, including the number of units included in each

layer.) From “Representing Task Context: Proposals Based on a Connec-

tionist Model of Action,” by M. Botvinick and D. C. Plaut, 2002, Psycho-

logical Research, 66, p. 300. Copyright 2002 by Springer. Adapted with

permission.

400 BOTVINICK AND PLAUT

Figure 3. Architecture of the overall SRN model from Botvinick & Plaut (2004). Open arrows indicate that every unit 

in the sending layer is connected to every unit in the receiving layer. 
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GOMS

 GOAL: EDIT-MANUSCRIPT
 GOAL: EDIT-SUBTASK  repeat until no more subtasks

 GOAL: ACQUIRE-SUBTASK
✦ GET-NEXT-PAGE   if at end of manuscript page
✦ GET-NEXT-TASK

 GOAL: EXECUTE-SUBTASK
✦ GOAL: LOCATE-LINE

– [select:  USE-QUOTED-STRING-METHOD
–   USE-LINEFEED-METHOD]

✦ GOAL: MODIFY-TEXT
– [select: USE-SUBSTITUTE-COMMAND
–   USE-MODIFY-COMMAND]
– VERIFY-EDIT
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ACT-R

 Inputs:
 Knowledge

 IF-THEN rules (termed “productions”)
 Declarative knowledge (“chunks”)
 Subsymbolic parameters

 Simulated task environment/world
 Output: Time-stamped 

behavior sequence
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Experiment Overview

 Task is a routine procedure
 Subjects trained approximately one week before
 Concurrent working memory task given
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Where No Interface Has Gone Before: 
What Can the Phaser Teach Us About Label Usage in HCI?

Abstract 
Most research on how people represent procedures suggests that 

control labels are central. However, our data suggest that even 

moderately-experienced users 

do not rely on labels to locate interface elements. 

Introduction
Skilled users often do not read labels on control objects while 

performing routine tasks. If they are not simply searching through 

a fi eld of text labels, how then do they navigate interfaces? In other 

words, do they conduct a visual search, reading all of the labels until 

the target is found, or do they have some kind of non-verbal spatial 

method for navigating the interface?

Method
The Task 

Critical task components:

1) Suffi cient training to ensure that users are skilled  when data is 

collected

2) Non-verbal actions, such as clicking buttons

Manipulation

Label Removal versus Button Addition

Procedure: Training

Learn the task by reading the manual and then practicing the phaser 

procedure until four error-free trials have been completed. The 

phaser procedure is indicated with red text in Figure 1. The subjects’ 

procedure was the same to operate the phaser in the button addition 

condition.

Procedure: Testing

Subjects returned between 4 and 10 days later for testing, to perform 

14 trials without assistance. Instructions noted that the interface may 

change, and a non-specifi c warning would be given. We wanted the 

task to be diffi cult so that a suffi cient number of errors would be 

made and could be studied. This was done by increasing working 

memory load with a concurrent letter memory updating task (Figure 

3). We provided further motivation by awarding cash prizes to the 

top three performers in each experiment.

Dependent Measures

• Step completion time

• Step error frequency

Subjects

• Label Removal: n = 12, 

mean age = 25.1 years (4), 

5 female

• Button Addition: n = 18, 

mean age = 19.5 years 

(1.7), 11 female

Results
Label Removal

There was no effect of label removal, all p > 0.1. 

Button Addition

Adding buttons increased error rates for some steps of the procedure, 

particularly step 4, “power connected,” and step 8, “fi ring.” Change 

by step interaction, F(9, 153) = 3.99, p < 0.001. No effect on click 

times, all p ! 0.65.

Discussion
• Interface navigation by experienced users not likely to simply be 

a visual search of labels, but instead probably involves some sort of 

non-verbal spatial representation.

• Why does the appearance of non-used interface elements cause an 

increase in error frequency? This fi nding suggests that whatever non-

verbal spatial representation is used is susceptible to interference 

from the interface or its elements.

• The lack of effect of button addition on click time suggests there 

was no speed-accuracy trade-off.

Franklin P. Tamborello, II, Phillip H. Chung, & Michael D. Byrne 
Rice University Department of Psychology 

Houston, Texas, USA

For correspondence:
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Figure 1. Label removal experiment: 

Perform seven trials (top), then perform 

seven trials with changed interface (bottom).

Figure 2. Extraneous button addition 

experiment: Perform seven trials (top), then 

perform seven trials with changed interface 

(bottom).
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Figure 4. Error frequency data for the label 

removal condition.

Figure 5. Click time data for the label 

removal condition.

Figure 6. Error frequency data for the button 

addition condition.

Figure 7. Click time data for the button 

addition condition.

Figure 3. Participants heard randomly-

ordered letters of the alphabet, one 

every three seconds. At some random 

interval of 9 – 45 seconds later, 

subjects were to recall the last three 

letters they heard in the order they 

heard them.

  

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

Phaser Task Step Number

pre-change

post-change

  

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

Phaser Task Step Number

pre-change

post-change

  

1 2 4 5 7 8 9
0

500

1000

1500

2000

2500

3000

3500

Phaser Task Step Number

pre-change

post-change

  

1 2 4 5 7 8 9
0

500

1000

1500

2000

2500

3000

3500

Phaser Task Step Number

pre-change

post-change



1

2

6

,7

3

4

5

8 9, 11

10

12



1

2

3

, 4

5

6

7

8 9, 11

10

12



s
ta

ti
c
, 

in
te

rv
e

n
in

g
 s

u
b

ta
s
k

p
ro

c
e

d
u

re
 c

h
a

n
g

e
, 

p
re

-c
h

a
n

g
e

p
ro

c
e

d
u

re
 c

h
a

n
g

e
, 

p
o

s
t-

c
h

a
n

g
e

n
o

n
-i
n

te
rv

e
n

in
g

s
e

m
a

n
ti
c
 c

o
n

tr
o

l

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
e

a
n

 T
o

ta
l 

E
rr

o
r 

R
a

te

Experiment 1 Condition



1

2

3

, 4

5

6

7

8 9, 11

10

12



1

2

3

4

5

6

78

9, 11

10

12



4

1

3

2

5

6

78

9, 11

10

12



s
ta

ti
c
, 

d
if
fe

re
n

t-
s
c
a

n
n

e
r

s
ta

ti
c
, 

s
a

m
e

-s
c
a

n
n

e
r

c
h

a
n

g
e

 p
ro

c
e

d
u

re
, 

p
re

-c
h

a
n

g
e

c
h

a
n

g
e

 p
ro

c
e

d
u

re
, 

p
o

s
t-

c
h

a
n

g
e

s
ta

ti
c
 s

u
b

ta
s
k
 r

e
o

rd
e

ri
n

g

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
e

a
n

 T
o

ta
l 

E
rr

o
r 

R
a

te

Experiment 2 Condition



The Model

 Model Goal: Simulate error rates across conditions and 
trial types
 4 conditions
 14 trial types total
 not just error generation, but also recovery

 Highest human SEM error rate = 0.0415
  model should do no worse across the board
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Basic Model Functioning
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Procedure Change
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Model Discussion

 Discrete, hierarchical goals
 governed basic behavior
 enabled extensible behavior
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Basic Model Functioning
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Procedure Change
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Model Discussion

 No quantitative, multi-condition error models in 
literature

 Same model mechanisms across
 4 between-subjects conditions
 14 trial types
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Future Work

 Extend model
 Step-level error
 Step completion time

 Model training, too
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General Discussion

 Hierarchical, discrete goal representation matters
 …for changing circumstances
 …for error recovery
 …like CSM

 Botvinick & Plaut’s connectionist model too narrow
 No postcompletion errors
 No error recovery
 No adaptation of old procedures to new circumstances
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Thank you!

 Questions?
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