

Cognitive Modeling, Cognitive Engineering, & Human Error

Acknowledgments Michael D. Byrne Bonnie E. John

Newell's 20 Questions Article

 Cognitive psychology has reached a point (35 years ago) where continuing to amass a catalogue of phenomena ceases to be very helpful – what we need is a grand theory of cognition.

20 Questions

 What are the main problems Newell identified with psychological research at the time?

PHENOMENA

- Physical name match difference (Posner)
- 2. Continuous rotation effect (Shepard)
- 3. Subitizing (Klahr)
- Chess position perception (DeGroot)
- 5. Chunks in STM (Miller)
- Recency effect in free recall (Murdock)
- Instructions to forget (Bjork)
- 8. PI release (Wickens)
- Linear search in sets in STM (Sternberg)
- 10. Non-improvement of STM search on success (Sternberg)
- 11. Linear search on displays (Neisser)
- 12. Non-difference of single and multiple targets in display search (Neisser)
- 13. Rapid STM loss with interpolated task (Peterson and Peterson)
- 14. Acoustic confusions in STM (Conrad)
- 15. High recognition rates for large set of pictures (Teghtsoonian and Shepard)
- 16. Visual icon (Sperling)
- 17. LTM hierarchy (Collins and Quillian)
- 18. LTM principle of economy (Collins and Quillian)
- 19. Successive versus paired recall in dichotic listening (Broadbent)
- 20. Click shift in linguistic expressions (Ladefoged and Broadbent)
- 21. Consistent extra delay for negation (Wason)
- 22. Saturation effect on constrained free recall (?)
- 23. Conservative probabilitistic behavior (Edwards)
- 24. Clustering in free recall (Bousefield)
- 25. Constant recall per category in free recall (Tulving)
- 26. Serial position effect in free recall (?)
- 27. Backward associations (Ebenholtz and Asch)
- 28. Einstellung (Luchins)
- 29. Functional fixity (Dunker)
- 30. Two-state concept models (all or none learning) (Bower and Trabasso)

Fig. 1. A partial list of psychological phenomena and investigators (parentheses).

PHENOMENA (cont'd)

- 31. Concept difficulty ordering: conjunct, disjunct, cond, ... (Hovland)
- Reversal learning (Kendlers)
- 33. von Restorff effect
- 34. Log dependency in disjunctive RT
- 35. Forward masking
- 36. Backward masking
- 37. Correlation between RT and EEG
- 38. Moon illusion (Boring)
- 39. Perceptual illusions (Mueller-Lyer, etc.)
- 40. Ambiguous figures (Necker cube)
- 41. Cyclopean perception (Julesz)
- 42. Imagery and recall (Pavio)
- 43. Constant time learning (Murdock, Bugelski)
- 44. Probability matching (Humphreys)
- 45. Transmission capacity in bits (Quastler)
- 46. Pupillary response to interest (Hess)
- 47. Stabilized images (Ditchburn)
- 48. Meaningful decay of the stabilized image (Hebb)
- 49. Categorical concepts (phonemes) (Lieberman)
- 50. Effect of marking (Clark)
- 51. Negative effect in part-whole free recall learning (Tulving)
- 52. Storage of semantic content over linguistic expression (Bransford)
- 53. Information addition (Anderson)
- 54. Induced chunking (Neal Johnson, Gregg and McLean)
- 55. Rehearsal
- 56. Repetitive eye scanning (Noton and Stark)
- 57. Positive effects of redundancy on learning (syntactic, semantic)
- 58. Effects of sentence transformations on recall (Miller)
- 59. Effect of irrelevant dimensions in concept learning (Restle)

Fig. 1 (continued).

BINARY OPPOSITIONS

- 1. Nature versus nurture
- 2. Peripheral versus central
- 3. Continuous versus all-or-none learning
- 4. Uniprocess versus duoprocess learning (Harlow)
- 5. Single memory versus dual memory (STM-LTM) (Melton)
- 6. Massed versus distributed practice
- 7. Serial versus parallel processing
- 8. Exhaustive versus self-terminating search
- 9. Spatial logic versus deep structure
- 10. Analog versus digital
- 11. Single code versus multiple codes
- 12. Contextual versus independent interpretation
- 13. Trace decay versus interference forgetting
- 14. Stages versus continuous development
- 15. Innate versus learned grammars (Chomsky)
- 16. Existence versus non-existence of latent learning
- 17. Existence versus non-existence of subliminal perception
- 18. Grammars versus associations for language (reality of grammar)
- 19. Conscious versus unconscious
- 20. Channels versus categorizing in auditory perception (Broadbent)
- 21. Features versus templates
- 22. Motor versus pure perception in perceptual learning
- 23. Learning on non-error trials versus learning only on error trials
- 24. Preattentive versus attentive

Fig. 2. A partial list of binary oppositions in psychology.

Diagnosis

- There is no framework in psychology
 - alternate explanations crop up ad nauseam for each phenomenon without leading to a grand theory of human cognition
- "...the 'normal' means of science may not suffice."
 - What did he mean by that?
 - Hint: What was the "slippery eel" problem Newell identified?

Potential Remedies

- "...the 'normal' means of science may not suffice."
 - What did he mean by that?
 - Hint: What was the "slippery eel" problem Newell identified?

One Potential Remedy: The Cognitive Architecture

- Embodies the invariant human cognitive resources and constraints
 - Used to construct models of human task performance

ACT-R

- Inputs:
 - Knowledge
 - IF-THEN rules (termed "productions")
 - Declarative knowledge ("chunks")
 - Subsymbolic parameters
 - Simulated task environment/world
- Output: Time-stamped behavior sequence

ACT-R Example

- Let's say you have a large environment with many devices controlling distal equipment
 - Like, say, a Navy ship
- You want to reduce crew requirements
 - Meaning more distal control
- New functionality must be added, new procedures learned by the operators
 - That is, things change
- How do we design human-machine interfaces and procedures to minimize the risk of error and slowdown?
 - In even the routine procedures

ACT-R Example

- To understand this, we need to know how people mentally represent routine procedures
 - Perform experiments to identify factors relevant to human performance
 - How do people represent the routine tasks that they preform?
 - How do people represent the space in which they perform those tasks?

CAT Triad

- Human performance not resultant from any one thing, but from interaction of three:
 - Cognition
 - Artifact
 - Task

ACT-R Example

- We can build models that embody the collection of human performance phenomena for a given task
 - Architecture: what's invariant about human cognition
 - Model: what's specific to the human and the task
 - CAT Triad: running the model allows interactions to play out

Engineering Models of Human Performance

- A priori quantitative predictions of human performance
- Learnable and usable by system designers
- Cover total tasks
- Usefully approximate

Card, Moran, & Newell

- The computer is man's most important tool
 - But at the time, principles governing its design was poorly understood
- Use of the computer differs fundamentally from other tools
- An applied psychological science needs:
 - Task Analysis
 - Calculation
 - Approximation

GOMS

- A Framework for Cognitive Engineering
 - Based on Model Human Processor
- Goals: the objective of the task and sub-tasks
- Methods: well-learned sequences of subgoals and low-level actions that can accomplish a goal
- Operators: low-level actions
- Selection Rules: if more than one method applies, specifies when each should be used

The Model Human Processor

- Three processors
- Associated memories
- Parameters
- Principles of Operation
- Quantitative predictions could be made for simple tasks, e.g.,
 - Speed of animation to create illusion of movement
 - Position of function keys for most efficient performance
 - And many more...

A Simple Example

- How can we predict pointing?
 - e.g., in a GUI
- Fitts' Law
 - T = average movement time
 - a = start/stop time of the device
 - b = speed of the device
 - D = distance to target
 - W = width of the target

$$T = a + b \log_2\left(\frac{D}{W} + 1\right)$$

Another Simple Example

- Given n equiprobable choices, how long will it take the user to pick one?
- Hick-Hyman Law
 - T = b•log₂(n + 1)
 - b = empirically-determined constant
 - + 1 because there is uncertainty about whether to respond at all, in addition to which response to make

Human Error

- Powerful technologies can have catastrophic consequences
- "Be more careful" admonishments don't work
- Systems engineering approach

Roots

- WWII: Highly trained pilots crashed mechanically-sound aircraft
 - Big problem
 - Loss of valuable personnel
 - Loss of valuable machines

Roots

- Aircraft disasters really bad for commercial aviation
- Airlines developed safety culture
 - Check lists
 - Crew Resource Management (CRM)
 - "Sterile Cockpit Rule"
- Aviation's approaches to safety have largely been successful
 - Now other industries are adopting their practices
 - E.G., CRM in the operating room

Human Error

- Human Limitations
- The "Cognitive Balance Sheet"
 - Errors often result because attributes of useful cognitive functions can have their drawbacks
- Induced Errors
 - E.g., Mode Errors

	Tra	nsporter	
	Desynchronize Synchronous Mode	Calibration Enter Frequency	
orter	 Transporter Power Diagnostic Z Auxiliary Power 	 Accept Frequency Accept Calibration Frequency Sample 	 Scanner On Scanner Off Active Scan Lock Signal
Transporter		Chatus	 Tracker On Tracker Off Modulator Fix Frequency
F			nostic m Lock 9
			Elapsed Time

Transporter

Ja	ammer		
Desynchronize Synchronous Mode Transporter Power Diagnostic Z Auxiliary Power	Calibration Enter Frequency Accept Frequency Accept Calibration Frequency Sample	 Scanner On Scanner Off Active Scan Lock Signal Tracker On Tracker Off Modulator 	Jammer
	Status Main Control Alpha Mask	• Fix Frequency Diagnostic System Lock Elapsed Time 3	ner

Jammer

Jammer

Environment

- Error often a function of human operator's environment
 - tools/interfaces
 - work groups
 - organizations

Swiss Cheese...

- ...model of Human Error
 - organizational (e.g., safety culture)
 - task structure
 - environmental conditions (e.g., weather)
 - artifact design
 - operator actions

Strategies for Combating Error

- Good Design
 - Incorporate good human factors from start to finish
- Crew Resource Management
 - structure work teams & procedures to facilitate communication, situation awareness, decision-making
- Automation
 - Take hard tasks away from the human
- Organizational Approaches
 - "Sterile Cockpit Rule"
 - Rules governing shift workers
 - Equipment purchasing